|
|
The numerical simulation for the influence of reservoir depth on well temperature in karstic-fault reservoir |
Wen-Ge HU1( ), Ning ZOU1, Dan-Dan LI1, Zhi-Juan WANG1, Jian LEI2( ), Yu-Hang GUO2, Bao-Zhi PAN2 |
1. Sinopec Northwest Oilfield Company,Urumqi 830012,China 2. College of GeoExploration Sicence and Technology,Jilin University,Changchun 130026,China |
|
|
Abstract The carbonate karstic-fault oil-bearing reservoir is rich in oil resources storage,and large karst caves and fractures are the main reservoir space and flow channels.There are mud leakage and hole collapse in the drilling process,so it is difficult to carry out conventional logging measurement,and reservoir evaluation or even reservoir depth (i.e. oil source location) can not be determined.Temperature curve is often used in production logging,and it is not affected by borehole condition and it can reflect the depth of the reservoir.Based on the morphological characteristics and size of karstic-fault reservoir,the authors constructed the geometric models of wellbore,formation,fracture and cave,and simulated the variation of wellbore temperature in the production of karstic-fault reservoir by numerical simulation method.The simulation results were analyzed,and then the oil source depth of karstic-fault reservoir was estimated by well temperature curve,which provides technical support for further development of karstic-fault reservoir.
|
Received: 12 March 2019
Published: 28 August 2020
|
|
Corresponding Authors:
Jian LEI
E-mail: huwg.xbsj@sinopec.com;leijian18@mails.jlu.edu.cn
|
|
|
|
17]) ">
|
Seismic image along the fault(The blue dotted line area in the figure is karst cave[17])
|
|
Schematic diagram of physical model
|
名称 | 符号 | 单位 | 值 | 石油密度 | ρ | kg·m-1 | 793.6 | 石油恒压热容 | Cρ | J·(kg·℃)-1 | 2200 | 石油粘度 | μ | Pa·s | 0.002 | 石油导热系数 | k | W·(m·℃)-1 | 1 | 地层密度 | ρf | kg·m-1 | 2715 | 地层恒压热容 | Cf | J·(kg·℃)-1 | 700 | 地层导热系数 | kf | W·(m·℃)-1 | 3.1 | 地温梯度 | gT | ℃·m-1 | 0.01818 | 地面温度 | T0 | ℃ | 23 | 石油流入速度 | ν | kg·s-1 | 1.39 |
|
Simulation parameters
|
|
Initial state of formation
|
|
Grid generation of model 4 a—global;b—karst cave and wellbore
|
|
The temperature distribution and well temperature curve of the wellbore(model 1) a—section diagram of temperature distribution;b—three dimensional distribution of temperature;c—well temperature curve
|
|
The temperature distribution and well temperature curve when the cave is below the well-bottom (model 2) a—section diagram of temperature distribution;b—three dimensional distribution of temperature;c—well temperature curve
|
|
The temperature distribution and well temperature curve when the cave is below the well-bottom (model 3) a—section diagram of temperature distribution;b—three dimensional distribution of temperature;c—well temperature curve
|
|
The temperature distribution and well temperature curve when the cave is at the above of the well-bottom (model 4) a—section diagram of temperature distribution;b—three dimensional distribution of temperature;c—well temperature curve
|
|
Comparison of measured and simulated well temperature curves
|
[1] |
杨德彬. 塔河油田断溶体油藏地震反射特征类型及规律[J]. 石化技术, 2018,25(4):121-122.
|
[1] |
Yang D B. Type and regularity of the seismic reflection characteristic of fault-karst carbonate reservoirs in the Tahe oilfield[J]. Petrochemical Industry Technology, 2018,25(4):121-122.
|
[2] |
焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018,39(2):207-216.
|
[2] |
Jiao F Z. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area,Tarim Basin[J]. Oil & Gas Geology, 2018,39(2):207-216.
|
[3] |
鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气, 2015,36(3):347-355.
|
[3] |
Lu X B, Hu W G, Wang Y, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area,Tarim Basin[J]. Oil and Gas Geology, 2015,36(3):347-355.
|
[4] |
常少英, 庄锡进, 邓兴梁, 等. 断溶体油藏高效井预测方法与应用效果——以HLHT油田奥陶系潜山区为例[J]. 石油地球物理勘探, 2017,52(s1):199-206.
|
[4] |
Chang S X, Zhuang X J, Deng X L, et al. Fault-karst carbonate reservoir prediction: a case study in Ordovician buried hills,HLHT Oilfield[J]. Oil Geophysical Prospecting, 2017,52(s1):199-206.
|
[5] |
甘秀娥. 利用测井资料评价钻井液漏失层[J]. 测井技术, 2002(6):474-477.
|
[5] |
Gan X E. Evaluation of mud loss while drilling by using temperature logging and imaging logging data[J]. Well Logging Technology, 2002(6):474-477.
|
[6] |
Pan B Z, Li D, Chen G, et al. Numerical simulation of wellbore and formation temperature fields in carbonate formations during drilling and shut-in in the presence of lost circulation[J]. Petroleum Science, 2014,11(2):293-299.
|
[7] |
高鹏. 井温测井数值计算[D]. 长春:吉林大学, 2007.
|
[7] |
Gao P. Numerical computation of temperature logging[D]. Changchun:Jilin University, 2007.
|
[8] |
陈刚. 碳酸盐岩储层温度特征及温度测井资料应用研究[D]. 长春:吉林大学, 2013.
|
[8] |
Chen G. Research of temperature characteristics in carbonate reservoirs and temperature logging data applications[D]. Changchun:Jilin University, 2013.
|
[9] |
宋延杰, 石颖. 注聚合物井井下温度分布数值模拟研究[J]. 地球物理学进展, 2007,22(5):1533-1538.
|
[9] |
Song Y J, Shi Y. Numerical simulation of downhole temperature distribution in polymer injection well[J]. Progress in Geophysics, 2007,22(5):1533-1538.
|
[10] |
卢占国. 缝洞型介质流体流动规律研究[D]. 青岛:中国石油大学(华东), 2010.
|
[10] |
Lu Z G. Fluid flow law in fractured vuggy media[D]. Qingdao:China University of Petroleum (East China), 2010.
|
[11] |
李爱芬, 张东, 姚军, 等. 缝洞单元注水开发物理模拟[J]. 中国石油大学学报:自然科学版, 2012,36(2):130-135.
|
[11] |
Li A F, Zhang D, Yao J, et al. Physical simulation of water flooding in fractured-vuggy unit[J]. Journal of China University of Petroleum:Natural Science, 2012,36(2):130-135.
|
[12] |
王雷, 窦之林, 林涛, 等. 缝洞型油藏注水驱油可视化物理模拟研究[J]. 西南石油大学学报:自然科学版, 2011,33(2):121-124.
|
[12] |
Wang L, Dou Z L, Lin T, et al. Study on the visual modeling of water flooding in carbonate fracture-cavity reservoir[J]. Journal of Southwest Petroleum University:Natural Science, 2011,33(2):121-124.
|
[13] |
侯吉瑞, 李海波, 姜瑜, 等. 多井缝洞单元水驱见水模式宏观三维物理模拟[J]. 石油勘探与开发, 2014,41(6):717-722.
|
[13] |
Hou J R, Li H B, Jiang Y, et al. Macroscopic three-dimensional physical simulation of water flooding in multi-well fracture-cavity unit[J]. Petroleum Exploration and Development, 2014,41(6):717-722.
|
[14] |
雷健. 基于数字岩心的致密砂岩微观渗流模拟[D]. 长春:吉林大学, 2018.
|
[14] |
Lei J. Microscopic flow simulation of tight sandstone based on digital core[D]. Changchun:Jilin University, 2018.
|
[15] |
宋戈. 气井井筒瞬态温度压力耦合模型研究[D]. 成都:西南石油大学, 2015.
|
[15] |
Song G. Study on transient temperature pressure coupling model of gas wellbore[D]. Chengdu:Southwest Petroleum University, 2015.
|
[16] |
鲍典, 张慧涛. 塔河油田碳酸盐岩断溶体油藏分隔性描述方法研究[J]. 新疆石油天然气, 2017,13(1):25-30.
|
[16] |
Bao D, Zhang H T. Description of the separation in fault-karst carbonate reservoirs in Tahe oilfield[J]. Xinjiang Oil & Gas, 2017,13(1):25-30.
|
[17] |
Lu B X, Wang Y, Tian F, et al. New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin[J]. Marine and Petroleum Geology, 2017(86):587-605.
|
[18] |
唐海, 何娟, 荣元帅, 等. 塔河断溶体油藏典型断溶体注水驱替规律及剩余油分布特征[J]. 油气地质与采收率, 2018,25(3):95-100.
|
[18] |
Tang H, He J, Rong Y S, et al. Study on water drive law and characteristics of remaining oil distribution of typical fault-karst in faul-tkarst reservoirs,Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018,25(3):95-100.
|
[19] |
唐杰, 熊彬. 基于COMSOL软件的非结构化网格下的二维大地电磁正演模拟[J]. 工程地球物理学报, 2018,15(3):347-356.
|
[19] |
Tang J, Xiong B. The simulation of unstructured grid two-dimensional magnetotelluric forward modeling based on COMSOL software[J]. Chinese Journal of Engineering Geophysics, 2018,15(3):347-356.
|
[20] |
马慧, 王刚. COMSOL Multiphysics基本操作指南和常见问题解答[M]. 北京: 人民交通出版社, 2009.
|
[20] |
Ma H, Wang G. Basic operating guide and frequently asked questions for COMSOL Multiphysics[M]. Beijing: People's Communications Publishing, 2009.
|
[21] |
张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010.
|
[21] |
Zhang D L. Computational fluid dynamics course [M]. Beijing: Higher Education Press, 2010.
|
[1] |
ZHANG Jian-Zhi, HU Fu-Hang, LIU Hai-Xiao, XING Guo-Zhang. TEM response characteristics of borehole in goaves of old coal mines[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 191-197. |
[2] |
XIAO Yan-Shan, ZHOU Zheng-Hua, SU Jie, WEI Xin. Discussion about the theoretical basis of the down-hole method for shear wave velocity test under surface forward and reverse horizontal hammer strikes[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1288-1294. |
|
|
|
|