|
|
The application of geophysical information and ore-controlling structures to the Michurinskoye uranium deposit, Ukraine |
Yong-Fei WANG, Bao-Xin LI( ), Yun CAO, Chen-Yang LIU |
Sichuan Institute of Nuclear Geology, Chengdu 610053,China |
|
|
Abstract Based on the survey of soil radon gas and gamma spectrum in the Michurinskoye uranium deposit in Central Ukrainian U province, and the comprehensive comparative analysis of the existing regional gravity, magnetic, seismic and logging data, the authors used various geophysical exploration techniques to evaluate the existing orebodies rapidly and effectively. On the basis of the analysis and study of ore-controlling structures in tectonic alteration zones, the authors constructed the identification technology of deep uranium metallogenic information and the comprehensive technology of deep uranium resources exploration and evaluation for hydrothermal uranium deposits, and provided theoretical guidance for the prospecting of alternative resources in similar mining areas and crisis mines.
|
Received: 27 May 2019
Published: 03 March 2020
|
|
Corresponding Authors:
Bao-Xin LI
E-mail: 376432449@qq.com
|
|
|
|
4] 1—Rapakivi granite plutons(KN-Korsun-Novomyrgorod,Kr-Korosten);2—Novoukrainka granite plutons(NK-Novoukrainka);3—Shear band:①—NK-Nemyriv-Kocherivsk;②GT—Golovan-Yadlov-Traktemyriv;③—KK-Kryvy-Rig-Kremenchug-West Ingul;④—OP-Orichiv-Pavlograd;4—basic dikes; 5—interblock (fault block) fracture; 6—main fault / anticline; 7—metasomatic uranium deposit; 8—vein type uranium deposit; 9—sedimentary rock type; 10—ring porphyry granite (KN);11—mafic-ultramafic rocks; 12—microplagioclase granite (NK); 13—Ingur-Ingulitz unit metamorphic rocks (gneiss, etc.); 14—Kangksk-Vikhovtsev unit rocks (amphibolite, iron-rich rocks); 15—Krivorog unit (mafic rock); 16—Dnieper-Saxagan unit (plagioclase granite, migmatite, etc.);fracture:F1—Bug-Mironov Lineament;F2—Krivoy Rog-Kremenchug Lineament;f1—Annov-Zvenigorod Fault;f2—Kirovograd Fault;f3—Subotin-Mashorin Fault;f4—Novokostantynivka Fault;f5—Glodosk Fault;f6—Adabash Fault.CUUP-Central Ukrainian Uranium Province ">
|
Precambrian Shield Geological Structure and Secondary massif Composition in Ukraine(a)& Distribution map of uranium deposits(b)[4] 1—Rapakivi granite plutons(KN-Korsun-Novomyrgorod,Kr-Korosten);2—Novoukrainka granite plutons(NK-Novoukrainka);3—Shear band:①—NK-Nemyriv-Kocherivsk;②GT—Golovan-Yadlov-Traktemyriv;③—KK-Kryvy-Rig-Kremenchug-West Ingul;④—OP-Orichiv-Pavlograd;4—basic dikes; 5—interblock (fault block) fracture; 6—main fault / anticline; 7—metasomatic uranium deposit; 8—vein type uranium deposit; 9—sedimentary rock type; 10—ring porphyry granite (KN);11—mafic-ultramafic rocks; 12—microplagioclase granite (NK); 13—Ingur-Ingulitz unit metamorphic rocks (gneiss, etc.); 14—Kangksk-Vikhovtsev unit rocks (amphibolite, iron-rich rocks); 15—Krivorog unit (mafic rock); 16—Dnieper-Saxagan unit (plagioclase granite, migmatite, etc.);fracture:F1—Bug-Mironov Lineament;F2—Krivoy Rog-Kremenchug Lineament;f1—Annov-Zvenigorod Fault;f2—Kirovograd Fault;f3—Subotin-Mashorin Fault;f4—Novokostantynivka Fault;f5—Glodosk Fault;f6—Adabash Fault.CUUP-Central Ukrainian Uranium Province
|
区位 | 地层单元 | 组 | 厚度/m | 岩性 | 因古尔(I) 断块东段 | 因古尔- 因古列茨 | 罗迪奥尼夫卡 Rodionivka | 2200 | 带黑云母片岩的石英岩。在博诺马带夹层,顶部有大理石、黑云母和角闪石—黑云母片麻岩和片岩中间层 | 阿尔茨米夫斯克 Artcmivsk | 200 | 含黑云母和黑云母闪石片麻岩和片岩夹层的含磁铁矿石英岩 | 泽莲娜里奇卡 Zelena Richka | 180 | 正角闪岩、角闪石和角闪石—黑云母正棱岩和杂岩体,底部有石英岩夹层的石英岩和矽线石黑云母,石榴石云母片岩,顶部有石墨或滑石—碳酸盐片岩夹层 | 因古尔(I) 断块 | 因古尔— 因古列茨 | 切切利夫卡 Chechelivka | >2000 | 黑云母,通常为石榴子石片麻岩和含角闪石、片状堇青石和硅锰矿—堇青石片麻岩夹层的片岩 | 斯帕西夫卡 Spasivfca | >3000 | 黑云母—辉石、黑云母—角闪石—辉石局部磁铁矿片麻岩、片岩、黑云母、石墨黑云母和堇青石黑云母片麻岩和角闪岩互层 |
|
Central Ukrainian Shield,correlation of Paleoproterozoic lithostratigraphic units of the Ingul Megablock and eastern segment of Ingul Megablock[4]
|
|
A sketch of plane section in the middle section of the Michurinsk deposit and a three-dimensional schematic model of the main ore belt 1—cenozoic overburden;2—gneiss;3—granite;4—syenite;5—albites;6—mylonite;7—pegmatite;8—fault;9—orebody
|
|
Sodium metasomatic alteration zoning map of the Michurinsk deposit 1—cenozoic overburden;2—gneiss;3—granite;4—syenite;5—albites;6—mylonite;7—pegmatite;8—fault;9—orebody
|
|
Gravity and magnetic charts of the Kirovograd uranium metallogenic area, central Ukraine
|
|
Soil Radon Profile of Michurinsk Uranium Deposit 1—cenozoic overburden;2—gneiss;3—granite;4—syenite;5—albites;6—mylonite;7—pegmatite;8—fault
|
岩石名称 | U/10-6 | Th/10-6 | K/10-6 | ∑/10-6 | Th/U | 备注 | 混合花岗岩 | 6.82 | 47.36 | 4.84 | 45.61 | 6.94 | 围岩 | 混合花岗岩 | 4.13 | 37.45 | 5.12 | 38.83 | 9.07 | 围岩 | 片麻岩 | 3.33 | 28.39 | 3.71 | 31.16 | 8.53 | 围岩 | 中粗粒花岗岩 | 5.58 | 13.44 | 7.16 | 35.46 | 2.41 | 围岩 | 赤铁矿化—磁铁矿混合岩 | 5.65 | 27.90 | 5.38 | 37.93 | 4.94 | 围岩 | 中粒黑云母花岗岩 | 7.05 | 58.96 | 6.05 | 53.33 | 8.36 | 围岩 | 角闪岩 | 17.43 | 18.49 | 1.90 | 36.21 | 1.06 | 基性岩脉 | 灰白色钠长岩 | 29.76 | 13.11 | 1.88 | 48.28 | 0.44 | 近矿围岩 | 角闪岩 | 28.39 | 11.85 | 1.86 | 46.66 | 0.42 | 基性岩脉 | 赤红色钠长岩 | 112.01 | 11.99 | 0.61 | 120.77 | 0.11 | 矿化 | 钠长岩 | 211.42 | 18.82 | 0.64 | 232.14 | 0.09 | 矿化 | 赤红色钠长岩 | 138.19 | 17.94 | 1.02 | 154.24 | 0.13 | 矿化 | 钠长岩 | 202.11 | 38.49 | 2.73 | 244.62 | 0.19 | 矿化 |
|
γ-ray spectrum results of surface and deep surrounding rocks and ore-bearing rocks of the michurinsk deposit
|
|
Geological-geophysical prospecting model map of Michurinsk uranium deposit
|
[1] |
Franz J D . Uranium deposits of the world: Europe[M]. Germany:Springer-Verlag Berlin Heidelberg, 2016: 1-3, 618-672.
|
[2] |
Fairclough M, Tulsidas H . Geological classification of Uranium deposits and description of selected examples[R]. Iaea Tecdoc Series, 2018(1842):130-170.
|
[3] |
Fairclough M, Tulsidas H . World distribution of Uranium deposits (UDEPO) 2016 edition[R]. Iaea Tecdoc Series, 2018(1843):14-28.
|
[4] |
Michel C, Alexander E, Julien M , et al. Uranium deposits associated with Na-metasomatism from central Ukraine:A review of some of the major deposits and genetic constraints[J]. Ore Geology Reviews, 2012,44:82-106.
|
[5] |
胡宝群, 王倩, 邱林飞 , 等. 相山矿田邹家山铀矿床碱交代矿化蚀变岩地球化学[J]. 大地构造与成矿学, 2016,40(2):377-385.
|
[5] |
Hu B Q, Wang Q, Qiu L F , et al. Geochemistry of alkali metasomatized rocks of Zoujiashan Uranium ore deposit in Xiangshan ore field[J]. Geotectonica et Metallogenia, 2016,40(2):377-385.
|
[6] |
谭玉清 . 3702铀矿床碱交代岩特征及成矿机理[J]. 世界核地质科学, 2018,35(3):137-142.
|
[6] |
Tan Y Q . Characteristics and mineralization mechanism of alkali metasomatite in Uranium Deposit 3702[J]. World Nuclear Geoscience, 2018,35(3):137-142.
|
[7] |
卓维荣 . 乌克兰钠交代岩型铀矿床地质特征[J]. 国外铀矿地质, 1994,11(3):211-220.
|
[7] |
Zhuo W R . Geological characteristics of sodium metasomatism type U deposit in Ukraine[J]. World Nuclear Geoscience, 1994,11(3):211-220.
|
[8] |
宋振涛, 祁程, 韩栋昱 , 等. 芨岭地区铀矿地质—地球物理特征研究[J]. 物探与化探, 2018,42(5):909-916.
|
[8] |
Song Z T, Qi C, Han D Y , et al. A study of geological-geophysicsical characteristics of uranium deposits in Jiling pluton[J]. Geophysical and Geochemical Exploration, 2018,42(5):909-916.
|
[9] |
李怀渊, 江民忠, 陈国胜 , 等. 我国航空放射性测量进展及发展方向[J]. 物探与化探, 2018,42(4):645-652.
|
[9] |
Li H Y, Jiang M Z, Chen G S , et al. The brilliant achievements and technological innovation of airborne radioactivity survey in China[J]. Geophysical and Geochemical Exploration, 2018,42(4):645-652.
|
[10] |
赵敏, 盛勇, 戚良刚 . 高精度重磁测量在覆盖区找矿中的应用—以无为县蔚山铁铜矿预查为例[J]. 物探与化探, 2019,43(6):1211-1216.
|
[10] |
Zhao M, Sheng Y, Qi L G . The application of high precision gravity and magnetic survey to prospecting in coverage area:A case study of the reconnaissance of Weishan iron and copper deposit in Wuwei County[J]. Geophysical and Geochemical Exploration, 2019,43(6):1211-1216.
|
[11] |
张虹, 周能, 邓肖丹 , 等. 国外航空重力测量与数据处理技术最新进展[J]. 物探与化探, 2019,43(5):1015-1022.
|
[11] |
Zhang H, Zhou N, Deng X D , et al. The latest progress in air gravity measurement and data processing technology abroad[J]. Geophysical and Geochemical Exploration, 2019,43(5):1015-1022.
|
[12] |
王振亮, 邓友茂, 孟银生 , 等. 综合物探方法在维拉斯托铜多金属矿床北侧寻找隐伏矿体的应用[J]. 物探与化探, 2019,43(5):958-965.
|
[12] |
Wang Z L, Deng Y M, Meng Y S , et al. The application of integrated geophysical prospecting method to the prospecting for concealed orebodies in the northern area of the Weilasituo copper polymetallic deposit[J]. Geophysical and Geochemical Exploration, 2019,43(5):958-965.
|
[13] |
刘金兰, 赵斌, 王万银 , 等. 南岭于都—赣县矿集区银坑示范区重磁资料探测花岗岩分布研究[J]. 物探与化探, 2019,43(2):223-233.
|
[13] |
Liu J L, Zhao B, Wang W Y , et al. A study of the distribution of granite detected by gravity and magnetic data in Yinkeng Demonstration Area of Nanling Yudu-Ganxian ore concentration area[J]. Geophysical and Geochemical Exploration, 2019,43(2):223-233.
|
[14] |
刘成东, 张爱, 钟鹏程 , 等. 粤北诸广矿区碱交代岩岩石化学和矿物化学特征及其与铀成矿关系[J]. 地质与勘探, 2010,46(1):33-40.
|
[14] |
Liu C D, Zhang A, Zhong P C , et al. The rock and mineral chemical characteristics of alkaline rocks in Zhuguang mining area of Northern Guangdong and its relationship with uranium mineralization[J]. Geology and Exploration, 2010,46(1):33-40.
|
[15] |
佟国元, 刘宪春, 沈步威 . 辽宁连山关地区铀成矿地质条件及找矿方向[J]. 科技创新导报, 2012,1:11-13.
|
[15] |
Tong G Y, Liu X C, Shen B W . Geological conditions and prospecting direction of uranium mineralization in Lianshanguan area, Liaoning Province[J]. Science and Technology Innovation Herald, 2012,1:11-13.
|
[16] |
辛存林, 安国堡, 孙现辉 , 等. 龙首山成矿带207铀矿床矿化特征和外围铀成矿潜力分析[J]. 地质科技情报, 2013,32(3):125-134.
|
[16] |
Xin C L, An G B, Sun X H , et al. Mineralization characteristics of Uranium deposit No.207 in Longshoushan metaliogenetic belt and the metallogenic potential of its peripheral area[J]. Geological Science and Technology Information, 2013,32(3):125-134.
|
[17] |
赵如意, 陈云杰, 武彬 , 等. 甘肃龙首山芨岭地区钠交代型铀矿成矿模式研究[J]. 地质与勘探, 2013,49(1):67-74.
|
[17] |
Zhao R Y, Chen Y J, Wu B , et al. A metallogenic model of the sodic metasomatic type uranium deposit in the JiLing area of Longshoushan,Gasu Province[J]. Geology and Exploration, 2013,49(1):67-74.
|
[18] |
赵如意, 姜常义, 陈旭 , 等. 甘肃省龙首山成矿带中段钠长岩脉地质特征及其与铀矿化关系研究[J]. 地质与勘探, 2015,51(6):1069-1078.
|
[18] |
Zhao R Y, Jiang C Y, Chen X , et al. Geological features of al-bitite veins and its relationship with uranium metallogenic in the middle Longshou Mountains of Gansu Province[J]. Geology and Exploration, 2015,51(6):1069-1078.
|
[19] |
杜乐天 . 花岗岩型铀矿文集[M]. 北京: 原子能出版社, 1982.
|
[19] |
Du L T . Collected Works of granite — type uranium deposits[M]. Beijing: Atomic Energy Press, 1982.
|
[20] |
杜乐天 . 碱交代成矿作用的地球化学共性和归类[J]. 矿床地质, 1983,2:33-41.
|
[20] |
Du L T . Geochemistry commonness and classification of alkali metasomatic mineralization[J]. Mineral Deposits, 1983,2:33-41.
|
[21] |
杜乐天 . 碱交代岩研究的重大成因意义[J]. 矿床地质, 2002,21:953-958.
|
[21] |
Du L T . The important significance of Alkali-metasomatic rock studies[J]. Mineral Deposits, 2002,21:953-958.
|
[22] |
朱意萍, 姚仲友, 赵宇浩 , 等. 南美地区铀矿床类型、成矿区带及找矿前景[J]. 地质通报, 2017,36(12):2185-2196.
|
[22] |
Zhu Y P, Yao Z Y, Zhao Y H, , et al. Deposit types, metallogenic belts and prospecting potential for uranium deposits in South America[J]. Geological Bulletin of China, 2017,36(12):2185-2196.
|
[23] |
孟凡兴, 贺海扬, 梁永顺 , 等. 综合物探方法在五里营地区火山岩型铀矿勘查中的应用[J]. 物探与化探, 2017,41(5):826-834.
|
[23] |
Meng F X, He H Y, Liang Y S , et al. The application of comprehensive geophysical prospecting method to the exploration of the volcanic rock type uranium deposits in Wuliying area[J]. Geophysical and Geochemical Exploration, 2017,41(5):826-834.
|
[24] |
张恩, 段明, 卢辉雄 , 等. 林西—乌兰浩特地区铀成矿多源信息分析与成矿预测[J]. 物探与化探, 2019,43(5):948-957.
|
[24] |
Zhang E, Duan M, Lu H X , et al. An analysis of multivariate uranium metallogenic information and metallogenic prognosis in Linxi-Ulanhot area[J]. Geophysical and Geochemical Exploration, 2019,43(5):948-957.
|
[1] |
LIU Wei, HUANG Tao, WANG Ting-Yong, LIU Yi, ZHANG Ji, LIU Wen-Tao, ZHANG Qi-Bin, LI Qiang. The application of integrated geophysical prospecting methods to the exploration of urban buried fault[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 1077-1087. |
[2] |
WANG Yun-Yun, LAN Xue-Yi, GUO Dong, ZHANG Sha-Sha, DING Wen-Xiang, TAO Long, ZHANG Hui-Jie, ZHANG Yuan-Yuan, YE Lin, YOU Miao. Diagenesis and mineralization in Tongling and Fanchang areas, Anhui Province: Constrains from the integrated geophysical exploration study[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 590-600. |
|
|
|
|