|
|
A study of structural optimization design of the wide-energy range gamma spectra logging system |
Zhuo-Dai LI1,2, Huai-Qiang ZHANG1,2(), Wei-Huang LU2, Jin-Yang LIU2, Miao-Miao YAN2 |
1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang 330013, China 2. School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China |
|
|
Abstract The gamma spectrometry logging is widely used in survey of radioactive, metallic and non-metallic deposits and stratigraphic correlation. In order to obtain a wider energy range of gamma spectra, the authors designed the wide-energy spectra logging system with the combination of LaBr3 and BGO detectors. To determine the optimal selection principle of the wide-energy range gamma spectra logging system, the authors built a model of wide-energy spectra logging system on MCNP to simulate the measured gamma spectrum. The simulation shows that the best effect is achieved when the shield is made of tungsten-iron-nickel alloy. When the shield thickness reaches 14 cm, simulation shows better shielding effect for the distal detector. The effect for the proximal detector is close to the distal one when its relative position is 35 cm or more. The effect of changing the position of the neutron source on the thermal neutron shielding is limited. As a thermal neutron shield, boron could achieve obvious shielding effect with 0.2cm layer. The effect of fast neutron can be reduced by increasing shield thickness and the distance between the proximal detector and the shield.
|
Received: 23 April 2019
Published: 28 November 2019
|
|
Corresponding Authors:
Huai-Qiang ZHANG
E-mail: zhanghq821@163.com
|
|
|
|
|
Geometric diagram of logging
|
|
Geometric diagram of detector
|
|
Gamma energy spectrums with different shielding materials
|
|
Relative shielding efficiency with different shield thicknesses and positions of the LaBr3 detector and the BGO detector
|
|
Relative shielding efficiency with different shield thicknesses in different detector positions
|
|
Relative shielding efficiency with different shield thicknesses and neutron source positions
|
|
Gamma energy spectrums with different boron layer thickness
|
[1] |
付锦, 赵宁博, 裴承凯 , 等. 中国铀、钍、钾元素地球化学场特征及与铀矿化关系[J]. 物探与化探, 2014,38(2):200-204.
|
[1] |
Fu J, Zhao N B, Pei C K , et al. Geochemical characteristics of uranium, thorium and potassium anomalies in china in relation to uranium mineralization[J]. Geophysical and Geochemical Exploration, 2014,38(2):200-204.
|
[2] |
胡守玉 . 诸广山岩体铀成矿航空伽马能谱特征及找矿预测[J]. 西部资源, 2018,87(6):164-166.
|
[2] |
Hu S Y . Characteristics of airborne gamma-ray spectrum of uranium mineralization at Zhuguang mountain in prospecting and prediction[J]. Western Resources, 2018,87(6):164-166.
|
[3] |
李继安 . 钍归一化在盆地γ能谱资料处理中的应用[J]. 世界核地质科学, 2007,24(3):178-181.
|
[3] |
Li J A . Application on Th normalization for basin gamma spectrometry data processing[J]. World Nuclear Geoscience, 2007,24(3):178-181.
|
[4] |
吴永鹏, 汤彬, 程建平 , 等. 利用LaBr3(Ce)伽马谱仪直接测定铀矿体中铀含量的方法[J]. 物探与化探, 2012,36(3):414-417.
|
[4] |
Wu Y P, Tang B, Cheng J P , et al. The application of LaBr3(Ce) gamma radiation scintillation spectrometer to direct determination of uranium content of uranium ore bodies[J]. Geophysical and Geochemical Exploration, 2012,36(3):414-417.
|
[5] |
王卫华 . 地层自然伽马射线能量峰的识别[D]. 青岛:中国石油大学( 华东), 2007.
|
[5] |
Wang W H . The identification of energy peaks in gamma-ray spectrum of formations[D]. Qingdao:China University of Petroleum( East China), 2007.
|
[6] |
王卫华 . 利用标准峰函数方法识别地层自然伽马射线能量峰[J]. 石油管材与仪器, 2007,21(1):77-79.
|
[6] |
Wang W H . Identifying the energy peaks in formation gamma-ray spectrum with the reference peakfunction[J]. Petroleum Instruments, 2007,21(1):77-79.
|
[7] |
李传伟, 廖琪梅, 李安宗 , 等. 自然伽马能谱解谱方法研究[J]. 核电子学与探测技术, 2008,28(4):796-800.
|
[7] |
Li C W, Yan Q M, Li A Z , et al. Study on the methods of spectrum skipping for spectrum gamma logging[J]. Nuclear Electronics & Detection Technology, 2008,28(4):796-800.
|
[8] |
Favalli A, Mehner H C, Simonelli F . Wide energy range efficiency calibration for a lanthanum bromide scintillation detector[J]. Radiation Measurements, 2008,43(2):506-509.
|
[9] |
文万信, 靳根明 . BGO高能γ探测器性能测定与效率模拟[J]. 高能物理与核物理, 2002,26(11):1178-1183.
|
[9] |
Wan W X, Qi G M . Numerical Simulations on Efficiency and Measurement of Capabilities of BGO Detectors for High Energy γ Ray[J]. High Energy Physics and Nuclear Physics, 2002,26(11):1178-1183.
|
[10] |
吴文圣 . 中子γ测井仪的中子屏蔽研究[J]. 核电子学与探测技术, 2004,24(1):24-26.
|
[10] |
Wu W S . Neutron shielding study of neutron-photon logging tool[J]. Nuclear Electronics & Detection Technology, 2004,24(1):24-26.
|
[11] |
严慧娟, 岳爱忠, 赵均 , 等. 地层元素测井仪器结构参数的蒙特卡罗数值模拟[J]. 测井技术, 2012,36(3):282-285.
|
[11] |
Yan H J, Yue A Z, Zhao J , et al. Monte Carlo numerical simulation of structure parameters in formation elements logging tool[J]. Well Logging Technology, 2012,36(3):282-285.
|
[12] |
朱力, 葛良全, 张庆贤 , 等. MC法模拟地层元素测井仪优化中子屏蔽体[J]. 核电子学与探测技术, 2016,36(9).
|
[12] |
Zhu L, Ge L Q, Zhang Q X , et al. The Monte Carlo simulation optimizes of formation elements logging instrument neutron shielding[J]. Nuclear Electronics & Detection Technology, 2016,36(9).
|
[13] |
张罡 . 地层元素测井伽马能谱数值模拟[D]. 成都:成都理工大学, 2018.
|
[13] |
Zhang G . Formation element logging mamma spectra numerical simulation[D]. Chengdu:Chengdu University of Technology, 2018.
|
[14] |
谢希成, 赖万昌, 赵祖龙 , 等. LaBr3 (Ce)与NaI(Tl)闪烁探测器的性能研究与比较[J]. 核电子学与探测技术, 2014(7):917-920.
|
[14] |
Xie X C, Lai W C, Zhao Z L , et al. Test and comparison of lanthanum bromide and sodium Iodide detector[J]. Nuclear Electronics & Detection Technology, 2014(7):917-920.
|
[15] |
董兰屏, 庞巨丰 . 自然伽马能谱测井原理及其应用[J]. 计量与测试技术, 2009,36(9):50-51.
|
[15] |
Dong L P, Pang J F . The Principle and Application of Natural Gamma Ray Spectrometry Logging[J]. Metrology & Measurement Technique, 2009,36(9):50-51.
|
[16] |
任爱阁 . 自然伽马能谱测井谱解析方法研究[D]. 山东:中国石油大学( 华东), 2007.
|
[16] |
Ren A G . The study of spectral analysis of natural gamma ray spectralog[D]. Shandong: China University of Petroleum, 2007.
|
[17] |
孟繁良 . 中子俘获伽玛能谱处理方法及其在元素俘获测井中的初步应用[D]. 兰州:兰州大学, 2015.
|
[17] |
Meng F L . Neutron capture gamma ray spectrum processing method and preliminary application in elemental capture logging[D]. Lanzhou:Lanzhou University, 2015.
|
[18] |
郑华, 孙亮, 梁庆宝 , 等. PNST-E脉冲中子地层元素测井技术研究[J]. 测井技术, 2015,39(4):395-404,421.
|
[18] |
Zheng H, Sun L, Liang Q B , et al. On formation element logging with the PNST-E pulsed neutron spectroscopy tool[J]. Well Logging Technology, 2015,39(4):395-404,421.
|
[19] |
喻益明 . 地层元素测井解释方法研究[J]. 同位素, 2017,30(3):187-193.
|
[19] |
Yu Y M . The study of formation elements logging interpretation method[J]. Journal of Isotopes, 2017,30(3):187-193.
|
[20] |
程华国, 袁祖贵 . 用地层元素测井(ECS)资料评价复杂地层岩性变化[J]. 核电子学与探测技术, 2005,25(3):233-238.
|
[20] |
Cheng H G, Yuan Z G . Evaluation of formation lithology changes using elemental capture spectroscopy (ECS) logging[J]. Nuclear Electronics & Detection Technology, 2005,25(3):233-238.
|
[21] |
吴文圣, 张立娟 . 核辐射测井全能谱分析方法综述[J]. 地球物理学进展, 2011,26(4):1423-1430.
|
[21] |
Wu W S, Zhang L J . The summarization for full spectrum analysis methods of radioactive logging[J]. Progress in Geophysics, 2011,26(4):1423-1430.
|
[22] |
Galford J E, Quirein J A, Shannon S, et al. Field test results of a new neutron induced gamma ray spectroscopy geochemical logging tool[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2009.
|
[23] |
李娟, 陈通, 陈绪龙 . 宽能域中子伽马能谱测井技术及其应用[J]. 油气藏评价与开发, 2014(4):34-38.
|
[23] |
Li J, Chen T, Chen X L . Wide field neutron-gamma spectrum logging and its application[J]. Reservoir Evaluation and Development, 2014(4):34-38.
|
[1] |
ZHANG Jian-Zhi, HU Fu-Hang, LIU Hai-Xiao, XING Guo-Zhang. TEM response characteristics of borehole in goaves of old coal mines[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 191-197. |
[2] |
XIAO Yan-Shan, ZHOU Zheng-Hua, SU Jie, WEI Xin. Discussion about the theoretical basis of the down-hole method for shear wave velocity test under surface forward and reverse horizontal hammer strikes[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1288-1294. |
|
|
|
|