|
|
The effect of radioactive measurement for uranium and gold prospecting in Mazong Mountain area |
Hua-Yu DU1,2, Xiao-Lu LI1,2, Xian-Hong WU1,2 |
1. Airborne Survey and Remote Sensing Center of Hebei Province Shijiazhuang 050002, China 2. CNNC Key Laboratory of Geophysical Exploration Technology Center for Uranium Resources, Shijiazhuang 050002, China |
|
|
Abstract Mazong Mountain is located in the eastern section of the Beishan gold mining area. Gold deposits are associated with anomalies detected by airborne radioactivity measurements, which are located in uranium anomalous edge gradient belt. By using the radioactivity measurement method, the authors found that the Shibandun uranium anomaly is located in the contact zone between Dundunshan magma mass and Sangejing groups and is controlled by two EW-trending broken quartz veins. The U content is higher than 18 × 10 -6 in Shibandun uranium anomaly and exceeds 10 × 10 -6 industrial boundary grade standard. Trough revealed that the uranium and gold have association characteristics. Gold content is (0.5 ~ 6.16) × 10 -6, and has reached the industrial grade. Therefore the radioactive measurement method is a rapid and effective method in the search for uranium and gold deposits in Mazong Mountain area.
|
Received: 21 July 2017
Published: 03 August 2018
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
样号 | 取样段/m | w(Au)/10-6 | w(V)/10-2 | w(Mn)/10-2 | w(C)/10-2 | w(K)/% | w(U)/10-6 | w(Th)/10-6 | TC1-1 | 11.95~16.95 | 0.53 | — | — | — | 1.46 | 29.77 | 9.87 | TC1-2 | 3.54 | — | — | — | 1.41 | 41.50 | 10.47 | TC1-3 | 1.14 | — | 0.079 | — | 2.71 | 52.79 | 26.40 | TC1-4 | 6.16 | — | 0.073 | — | 2.73 | 40.58 | 16.94 | TC1-5 | 0.58 | — | — | — | 2.02 | 67.24 | 9.81 | TC1-6 | — | — | — | — | 2.45 | 24.32 | 3.80 | TC2-1 | 19.2~20.2 | 0.49 | — | 0.15 | — | 1.00 | 81.45 | 4.84 | TC2-1 | 0.75 | — | — | — | 0.37 | 49.33 | 5.59 | TC2-1 | <0.10 | — | 0.082 | — | 4.15 | 12.54 | 16.54 | TC2-4 | 51.97~57.96 | — | — | — | — | — | 34.60 | 7.76 | TC2-5 | — | — | — | 1.04 | — | 34.54 | 7.27 | TC2-6 | — | — | — | 1.39 | — | 36.64 | 9.95 | TC2-7 | 61.91~63.91 | — | — | — | 1.97 | — | 21.99 | — | TC2-8 | — | — | — | 1.27 | — | 16.89 | — |
|
|
|
|
[1] |
周济元, 崔炳芳, 肖惠良 , 等. 甘新北山东段裂谷演化及金矿成矿规律[J]. 火山地质与矿产, 2000,21(1):7-17.
|
[2] |
左国朝, 何国琦 . 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990, 3-5.
|
[3] |
龚全胜, 刘明强, 梁明宏 , 等. 北山造山带大地构造相及构造演化[J]. 西北地质, 2003,36(1):11-16.
|
[4] |
左国朝, 刘义科 . 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003,12(1):1-15.
|
[5] |
杨合群, 李英 . 北山成矿构造背景概论[J]. 西北地质, 2008,41(1):22-26.
|
[6] |
张发荣, 牛卯胜 . 甘肃北山地区成矿带划分及基本特征[J]. 甘肃地质学报, 2003,12(1):50-57.
|
[7] |
徐志刚 . 中国成矿带划分方案[M]. 北京: 地质出版社, 2008,24
|
[8] |
甘肃省地质矿产局. 甘肃省区域地质志[M]. 北京: 地质出版社, 1989.
|
[9] |
施振昌, 蔡兰朋, 程明高 , 等. 甘肃北山地区铀矿化类型及成矿条件分析[R]. 核工业部西北地勘局216大队, 1983. 4.
|
[10] |
易顺国, 陈家泉, 黄德文 , 等. 甘肃省北山地区部分铀矿点调查报告[R].甘肃省革委会、军区207工程指挥部, 1980. 12.
|
[11] |
核工业西北地勘局216大队. 甘肃省北山地区铀矿化特征及成矿条件分析[R]. 1984.
|
[12] |
陈礼宽, 胡兴风, 颜国森 , 等. 伽玛能谱快速找金方法及其应用[J]. 江苏地质, 1996,20(3):166-171.
|
[13] |
邱元德 . 金矿床放射性勘查的良好效果[J]. 物探化探计算技术, 1996,18(s1):82-85.
|
[14] |
邱元德 . 金矿带铀、钍、钾、氧异常特征[J]. 地质与勘探, 1992,( 8):52-56.
|
[15] |
刘士倜 . 与金矿床有关的放射性地球化学研究[J]. 世界核地质科学, 1986,( 1):27-33.
|
[16] |
李景春, 赵爱林, 金成洙 , 等. 北山地区金窝子金矿床成矿系统分析[J]. 西北地质, 2003,36(3):57-61.
|
[17] |
殷先明 . 甘肃岩金矿床地质[M]. 兰州: 甘肃科学技术出版社, 2000.
|
[18] |
聂凤军, 江思宏, 白大明 , 等. 蒙甘新相邻(北山)地区金铜矿床时空分布特征及成矿作用[J]. 矿床地质, 2003,22(3):234-246.
|
[19] |
李克, 李强 . 新金厂金矿床蚀变地质特征[J]. 甘肃冶金, 2009,31(4):33-35.
|
[20] |
张志诚, 何智祖, 马廷玉 . 新金厂金矿成矿因素分析及找矿方向[J]. 甘肃冶金, 2012,34(3):67-70.
|
[21] |
李奋其, 王善成 . 甘肃小西弓金矿地质地球化学特征及成因探讨[J]. 矿物岩石, 2003,23(1):65-69.
|
[22] |
司雪峰, 张华, 张树宏 . 甘肃新金厂金矿床地质特征[J]. 桂林地质学院学报, 2000,20(3):238-242.
|
[23] |
王锐军, 付开泉, 杨斌 , 等. 金矿放射性γ能谱特征及其应用研究——以瓜州县老金厂金矿为例[J] . 甘肃地质, 2014,23(4):84-88.
|
[1] |
CHEN Xiu-Juan, LIU Zhi-Di, LIU Yu-Xi, CHAI Hui-Qiang, WANG Yong. Research into the pore structure of tight reservoirs:A review[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 22-31. |
[2] |
XIAO Guan-Hua, ZHANG Wei, CHEN Heng-Chun, ZHUO Wu, WANG Yan-Jun, REN Li-Ying. Application of shallow seismic reflection surveys in the exploration of urban underground space in Jinan[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 96-103. |
|
|
|
|