|
|
The construction of complex fracture geophysical model and the gathering and processing of seismic data |
Fu-Hong ZHANG1( ), Ping HUANG1, Kai-Wei HUANG2, Xu GUAN1, Ding-Yong ZOU1, Han LIANG1 |
1.Research Institute of Exploration and Development,PetroChina Southwest Oil and Gas Field Company,Chengdu 610041,China 2.Department of International Cooperation,Southwest Oil and Gas Field Company,Chengdu 610051,China |
|
|
Abstract The fracture is the main flow channel and the important reservoir space of the Jurassic tight oil reservoir in central Sichuan Basin,which controls the distribution and the high yield of oil and gas.The fractures of reservoir are mainly divided into the structural fractures formed by the tectonic stress field and the diagenetic fractures produced in the process of reservoir sedimentation and diagenesis.So the study and prediction of fractures is very important for the search of tight oil reservoir.Based on the study of the characteristics and manufacture methods of complex fracture,the authors constructed a fractured reservoir seismic physical model associated with the actual geological parameters,and carried out the study of three-dimensional seismic acquisition of seismic data,the regular pre- and post-stack processing,a 3D P-wave seismic data based on the establishment of a comprehensive crack model.The results have important guiding significance for the study of the seismic reflection characteristics of the fracture and the fracture zone and the investigation of sensitive properties of the optimal fracture prediction.
|
Received: 16 November 2016
Published: 20 February 2018
|
|
|
|
|
|
|
|
|
裂隙 编号 | 环氧树脂与 硅橡胶配比 | 纸纤维张数 | 裂缝密度 (张/mm) | x/mm | y/mm | z/mm | ρ/(g/cm3) | 样块1 | 1:0.15 | 320 | 9.203 | 47.81 | 34.77 | 25.38 | 1.156 | 样块2 | 1:0.30 | 320 | 9.598 | 47.55 | 33.34 | 29.61 | 1.126 | 样块3 | 1:0.45 | 320 | 9.744 | 32.84 | 30.67 | 32.84 | 1.095 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
项目 | 方案 | 观测系统 | 14L×8S×240R | 面元尺寸 | 25 m×25 m | 覆盖次数 | 10×7=70次 | 接收道数 | 3 360道 | 道距 | 50 m | 炮距 | 50 m | 接收线距 | 400 m | 炮线距 | 600 m | 纵向最大炮检距 | 6 150 m-200-50-200-6 150 m | 最小非纵距 | 25 m | 最大非纵距 | 2 775 m | 最大炮检距 | 6 747 m | 束线滚动距离 | 400 m | 横纵 | 0.56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] |
Hudson J A.Wave speeds and attenuation of elastic waves in material containing cracks[J].Geophysical Journal International,1981,64(1):133-150.
|
[2] |
Hudson J A.A higher order approximation to the wave propagation constants for a cracked solid[J].Geophysical Journal International,1986,87(1):265-274.
|
[3] |
Schoenberg M.Elastic wave behavior across linear slip interfaces[J].Journal of Acoustical Society of America,1980,68(5):1516-1521.
|
[4] |
Thomsen L.Weak elastic anisotropy[J].Geophysics,1986,51(10):1954-1966.
|
[5] |
Chang C H,Gardner G H F,McDonald J A.A physical model of shear-wave propagation in a transversely isotropic solid[J].Geophysics,1994,59:484-487.
|
[6] |
贺振华,李亚林,张帆,等.定向裂缝对地震波速度和振幅影响的比较—实验结果分析[J].物探化探计算技术,2001, 23(1):1-5.
|
[7] |
Ass'ad J M, McDonald R H,Tatham R H,et al. Elastic wave propagation in a medium containing oriented inclusions with a changing aspect ratio:A physical model study[J].Geophysical Journal International,1996,125:163-172.
|
[8] |
Ass'ad J M,Tatham R H,McDonald J A.A physical model study of microcrack-induced anisotropy[J].Geophysics,1992,57(12): 1562-1570.
|
[9] |
Ass'ad J,Tatham R H,McDonald J A,et al.A physical model study of scattering of waves by aligned cracks:Comparison between experiment and theory[J].Geophysics Prosp,1993,41:323-341.
|
[10] |
Wei J X.A physical model study of different crack densityes[J].Journal of Geophysics and Engineering,2004,1(1):70-76.
|
[11] |
乐喜友. 利用模型技术研究地震属性的地质意义[J].物探与化探,2001,25(3):191-197.
|
[12] |
韦红,朱仕军,谭勇,等.小断层识别技术研究与应用[J].勘探地球物理进展,2007,30(2):135-139.
|
[13] |
吴永平,王超. 三维相干体技术在三维精细构造解释中的应用[J]. 断块油气田,2008,15(2):27-29.
|
[14] |
王丹,贾跃伟,魏水建,等.新场须四段叠后裂缝综合预测[J].物探与化探,2014,38(5):1038-1044.
|
[15] |
巫芙蓉,李亚林,王玉雪,等.储层裂缝发育带的地震综合预测[J].天然气工业,2006,26(11):49-52.
|
[16] |
王开燕,徐清彦,张桂芳,等.地震属性分析技术综述[J].地球物理学进展,2013,28(2):815-823.
|
[17] |
党青宁,崔永福,陈猛,等.OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J].物探与化探,2016,40(2):398-404.
|
[1] |
SUN Si-Yuan, YU Xue-Zhong, XIE Ru-Kuan, HE Yi-Yuan, SHAN Xi-Peng, LI Shi-Jun. Capabilities of airborne electromagnetic methods to detect permafrost[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 104-113. |
[2] |
WANG Bo, GUO Liang-Hui, CUI Ya-Tong, Wang Xiang. The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1597-1605. |
|
|
|
|