|
|
|
| Determining five oxides in manganese ores using inductively coupled plasma-optical emission spectroscopy |
ZHANG Peng-peng1,2( ), XU Bing-xu3( ), HU Meng-ying1,2, Xu Jin-li1,2, LIU Bin1,2, ZHANG Ling-huo1,2, BAI Jin-feng1,2 |
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China 2. Key Laboratory of Geochemical Exploration, Ministry of Natural Resources, Langfang 065000, China 3. Institute of Comprehensive Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China |
|
|
|
|
Abstract Manganese ores are significant raw materials in the iron and steel industry. Accurately determining their major components is critical for the analysis of manganese ore composition. Based on three acid dissolution systems, i.e., aqua regia (HNO3+HC), tetracid (HNO3+HF+HClO4+HCl), and pentaacid (HNO3+HF+H2SO4+HClO4+HCl) solutions, and three extraction conditions, i.e., hydrochloric acid, nitric acid, and aqua regia, this study determined five oxides in manganese ores using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The results indicate that the pentaacid or pentaacid solution and the extraction with hydrochloric acid achieved encouraging determination results. Spectral lines with wavelengths of 766.490 nm (K), 184.006 nm (Ca), 589.592 nm (Na), 279.553 nm (Mg), and 396.152 nm (Al) were analyzed. The possible interference in the determination process was eliminated based on the standard solution matrix matching principle. The detection limits of Na, Mg, K, Ca, and Al were 0.000 27%, 0.000 21%, 0.000 15%, 0.000 17%, and 0.000 23%, respectively. The determination results of all five oxides in two national primary reference materials for manganese ores showed relative standard deviations (RSD) not exceeding 5.0%, suggesting fair precision. The verification results of all five oxides in five reference materials showed relative errors (RE) below 10%, demonstrating high accuracy, with the measured values roughly consistent with the recommended values. The spiked determination of five oxides in five manganese ores with unknown content yielded recovery rates ranging from 90% to 110%, suggesting that the accuracy met the analytical requirements. Therefore, the ICP-OES method simplifies sample pretreatment, improves efficiency, and reduces costs, thereby applying to batch sample analysis. The verification using reference materials demonstrates that its accuracy and precision meet industrial standards, establishing the ICP-OES method as an effective approach for determining the five oxides in manganese ore samples.
|
|
Received: 11 October 2023
Published: 30 December 2025
|
|
|
|
Corresponding Authors:
XU Bing-xu
E-mail: zhangpengpeng@mail.cgs.gov.cn;994814561@qq.com
|
|
|
|
| 参数 | 数值 | 参数 | 数值 | | 等离子体功率/W | 1150 | 长波积分时间/s | 20 | | 雾化器压力/psi | 30 | 短波积分时间/s | 10 | | 辅助气流量/(L·min-1) | 1.0 | 冷却气流量/(L·min-1) | 14 | | 蠕动泵速/(r·min-1) | 60 | 清洗时间/s | 20 |
|
Instrument operating parameters
|
| 氧化物 | 标准物质 | 认定值/% | 王水溶样 测定值/% | 四酸溶样 测定值/% | 五酸溶样 测定值/% | 测定值与认定值误差/% | | 王水溶样 | 四酸溶样 | 五酸溶样 | | Na2O | GBW07261 | 0.04 | 0.047 | 0.040 | 0.044 | 19.00 | 0.50 | 10.00 | | GBW07262 | 0.05 | 0.054 | 0.052 | 0.054 | 8.40 | 4.00 | 8.00 | | MgO | GBW07261 | 0.64 | 0.577 | 0.599 | 0.601 | 9.84 | 6.30 | 6.06 | | GBW07262 | 1.44 | 1.436 | 1.474 | 1.436 | 0.22 | 2.40 | 0.23 | | K2O | GBW07261 | 1.00 | 0.981 | 0.993 | 0.951 | 1.87 | 0.67 | 4.87 | | GBW07262 | 0.46 | 0.425 | 0.439 | 0.422 | 7.57 | 4.39 | 8.22 | | CaO | GBW07261 | 1.06 | 1.042 | 1.066 | 1.104 | 1.67 | 0.57 | 4.24 | | GBW07262 | 3.60 | 3.330 | 3.460 | 3.419 | 7.50 | 3.88 | 5.03 | | Al2O3 | GBW07261 | 2.20 | 2.108 | 2.204 | 2.207 | 4.16 | 0.21 | 0.32 | | GBW07262 | 3.00 | 2.929 | 2.974 | 2.897 | 2.34 | 0.85 | 3.42 |
|
Comparison of analysis results of different melting method
|
| 氧化物 | 标准物质 | 认定 值/% | 盐酸浸提 测定值/% | 硝酸浸提 测定值/% | 王水浸提 测定值/% | | Na2O | GBW07261 | 0.04 | 0.043 | 0.049 | 0.046 | | GBW07262 | 0.05 | 0.053 | 0.050 | 0.045 | | MgO | GBW07261 | 0.64 | 0.61 | 0.56 | 0.58 | | GBW07262 | 1.44 | 1.51 | 1.39 | 1.35 | | K2O | GBW07261 | 1.00 | 0.97 | 0.54 | 0.96 | | GBW07262 | 0.46 | 0.45 | 0.26 | 0.40 | | CaO | GBW07261 | 1.06 | 1.11 | 1.11 | 1.09 | | GBW07262 | 3.60 | 3.63 | 3.59 | 3.23 | | Al2O3 | GBW07261 | 2.20 | 2.24 | 1.68 | 2.18 | | GBW07262 | 3.00 | 3.13 | 2.65 | 2.77 |
|
Effects of different extraction acids on determination results
|
| 元素 | 测定值/(mg·L-1) | | 1%Mn | 4%Mn | 8%Mn | 10%Mn | 20%Mn | 25%Mn | | K | 10.17 | 10.14 | 10.05 | 10.05 | 10.99 | 11.20 | | Ca | 9.96 | 9.92 | 9.83 | 9.67 | 10.90 | 11.14 | | Na | 9.74 | 9.93 | 9.97 | 10.05 | 13.82 | 14.85 | | Mg | 10.02 | 9.90 | 9.78 | 9.51 | 9.49 | 9.44 | | Al | 10.24 | 10.15 | 10.48 | 10.83 | 12.25 | 12.99 |
|
Effect of Mn matrix mass concentration on the determination results of K、Ca、Na、Mg and Al
|
| 元素 | 波长 | 相关系数 | 线性方程 | 检出限/ 10-6 | | K | 766.490 | 0.9999 | y=1.3565×103x+15.949 | 1.5 | | Ca | 184.006 | 0.9999 | y=6.0257×10x+4.8343 | 1.7 | | Na | 589.592 | 0.9999 | y=2.9602×103x+54.545 | 2.7 | | Mg | 279.553 | 0.9994 | y=3.1583×104x+2.4967×103 | 2.1 | | Al | 396.152 | 0.9993 | y=9.1696×102x+8.9783 | 2.3 |
|
Linear equation, correlation coefficient and detection limit of calibration curve
|
| 编号 | GBW07261 | GBW07262 | | Na2O | MgO | K2O | CaO | Al2O3 | Na2O | MgO | K2O | CaO | Al2O3 | | 1 | 0.043 | 0.59 | 0.99 | 1.06 | 2.29 | 0.049 | 1.54 | 0.45 | 3.46 | 3.21 | | 2 | 0.044 | 0.58 | 0.97 | 1.04 | 2.22 | 0.044 | 1.46 | 0.44 | 3.36 | 3.10 | | 3 | 0.046 | 0.60 | 1.00 | 1.07 | 2.28 | 0.048 | 1.53 | 0.46 | 3.51 | 3.32 | | 4 | 0.043 | 0.58 | 0.97 | 1.06 | 2.27 | 0.044 | 1.50 | 0.45 | 3.48 | 3.24 | | 5 | 0.044 | 0.60 | 1.00 | 1.05 | 2.24 | 0.044 | 1.47 | 0.44 | 3.41 | 3.22 | | 6 | 0.042 | 0.58 | 0.96 | 1.02 | 2.22 | 0.044 | 1.48 | 0.44 | 3.38 | 3.12 | | 7 | 0.043 | 0.57 | 0.94 | 1.00 | 2.09 | 0.044 | 1.42 | 0.43 | 3.34 | 3.06 | | 8 | 0.041 | 0.55 | 0.91 | 0.98 | 2.07 | 0.044 | 1.39 | 0.42 | 3.23 | 2.93 | | 9 | 0.042 | 0.61 | 1.00 | 1.07 | 2.29 | 0.048 | 1.44 | 0.42 | 3.29 | 3.06 | | 10 | 0.041 | 0.63 | 1.03 | 1.09 | 2.30 | 0.045 | 1.41 | 0.42 | 3.24 | 2.99 | | 平均值/% | 0.043 | 0.59 | 0.98 | 1.04 | 2.23 | 0.045 | 1.47 | 0.44 | 3.37 | 3.12 | | 标准值/% | 0.04 | 0.64 | 1.00 | 1.06 | 2.20 | 0.05 | 1.44 | 0.46 | 3.60 | 3.00 | | RSD/% | 4.08 | 3.93 | 3.31 | 3.29 | 3.71 | 4.60 | 3.43 | 3.19 | 2.92 | 3.96 |
|
Precision of the method
|
| 氧化物 | 标准物质 | 认定值 /% | 测定值/% | 准确度 /% | 回收 率/% | | 本文方法 | 传统方法 | | Na2O | GBW07261 | 0.04 | 0.043 | 0.044 | 7.50 | | | GBW07262 | 0.05 | 0.054 | 0.054 | 8.00 | | | GBW07264 | 0.03 | 0.032 | 0.033 | 6.67 | | | GBW07265 | 0.02 | 0.021 | 0.020 | 5.00 | | | GBW07266 | 0.04 | 0.044 | 0.044 | 10.0 | | | 未知样品1 | | 0.78 | 0.78 | | 94.4 | | 未知样品2 | | 1.28 | 1.29 | | 103.1 | | 未知样品3 | | 1.08 | 1.07 | | 98.2 | | 未知样品4 | | 0.87 | 0.87 | | 93.2 | | 未知样品5 | | 0.61 | 0.62 | | 93.0 | | MgO | GBW07261 | 0.64 | 0.59 | 0.58 | -7.44 | | | GBW07262 | 1.44 | 1.48 | 1.48 | 3.08 | | | GBW07264 | 0.10 | 0.10 | 0.11 | 1.51 | | | GBW07265 | 3.50 | 3.58 | 3.58 | 2.34 | | | GBW07266 | 3.82 | 3.92 | 3.94 | 2.67 | | | 未知样品1 | | 5.35 | 5.36 | | 92.3 | | 未知样品2 | | 4.42 | 4.41 | | 96.2 | | 未知样品3 | | 5.09 | 5.06 | | 108.7 | | 未知样品4 | | 5.08 | 5.07 | | 100.3 | | 未知样品5 | | 5.50 | 5.03 | | 101.6 | | K2O | GBW07261 | 1.00 | 0.98 | 0.97 | -1.56 | | | GBW07262 | 0.46 | 0.45 | 0.43 | -1.25 | | | GBW07264 | 0.72 | 0.74 | 0.73 | 2.83 | | | GBW07265 | 0.46 | 0.45 | 0.44 | -0.26 | | | GBW07266 | 0.70 | 0.70 | 0.71 | 0.94 | | | 未知样品1 | | 1.73 | 1.72 | | 93.0 | | 未知样品2 | | 3.59 | 3.59 | | 93.7 | | 未知样品3 | | 2.67 | 2.65 | | 101.2 | | 未知样品4 | | 2.21 | 2.20 | | 94.1 | | 未知样品5 | | 1.24 | 1.24 | | 92.5 | | CaO | GBW07261 | 1.06 | 1.05 | 1.03 | -0.54 | | | GBW07262 | 3.60 | 3.44 | 3.42 | -4.38 | | | GBW07264 | 0.05 | 0.05 | 0.05 | -1.44 | | | GBW07265 | 14.7 | 13.9 | 13.8 | -5.00 | | | GBW07266 | 19.8 | 18.8 | 18.9 | -5.05 | | | 未知样品1 | | 17.76 | 17.75 | | 96.3 | | 未知样品2 | | 13.74 | 13.75 | | 96.1 | | 未知样品3 | | 15.93 | 15.94 | | 98.3 | | 未知样品4 | | 16.74 | 16.72 | | 110.0 | | 未知样品5 | | 19.26 | 19.24 | | 101.1 | | Al2O3 | GBW07261 | 2.20 | 2.22 | 2.21 | 1.12 | | | GBW07262 | 3.00 | 3.15 | 3.12 | 5.23 | | | GBW07264 | 8.97 | 8.27 | 8.24 | 7.79 | | | GBW07265 | 1.68 | 1.72 | 1.71 | 2.94 | | | GBW07266 | 2.49 | 2.63 | 2.61 | 5.97 | | | 未知样品1 | | 5.73 | 5.71 | | 98.2 | | 未知样品2 | | 9.54 | 9.52 | | 100.7 | | 未知样品3 | | 8.19 | 8.17 | | 96.4 | | 未知样品4 | | 7.02 | 7.01 | | 109.1 | | 未知样品5 | | 4.21 | 4.21 | | 101.5 |
|
Accuracy test of the method
|
| [1] |
Standardization Administration of the People's Republic of China. GB/T1511—2016Manganeseores—Determinationofcalciumandmagnesiumcontents—EDTAtitrimetricmethod[S]. Beijing: Standards Press of China, 2016.
|
| [2] |
中国国家标准化管理委员会. GB/T1513—2006锰矿石钙和镁含量的测定火焰原子吸收光谱法[S]. 北京: 中国标准出版社, 2007.
|
| [2] |
Standardization Administration of the People's Republic of China. GB/T1513—2006Manganeseores—Determinationofcalciumandmagnesiumcontents—Flameatomicabsorptionspectrometricmethod[S]. Beijing: Standards Press of China, 2007.
|
| [3] |
中国国家标准化管理委员会. GB/T1510—2016锰矿石铝含量的测定EDTA滴定法[S]. 北京: 中国标准出版社, 2016.
|
| [3] |
Standardization Administration of the People's Republic of China. GB/T1510—2016Manganeseores—Determinationofaluminiumcontent—EDTAtitrimetricmethod[S]. Beijing: Standards Press of China, 2016.
|
| [4] |
中国钢铁工业协会. GB/T14949.7—1994锰矿石化学分析方法钠和钾量的测定[S]. 北京: 中国标准出版社, 1994.
|
| [4] |
China Iron and Steel Association. GB/T14949.7—1994Manganeseores—Determinationofsodiumandpotassiumcontents[S]. Beijing: Standards Press of China, 1994.
|
| [5] |
Chen T, Dai J R. Determination of calcium oxide and magnesium oxide in manganese ore by EDTA titration[J]. Chinese Journal of Analysis Laboratory, 2008, 27(S2):311-313.
|
| [6] |
张文宇, 许晓慧. 熔融制样—X射线荧光光谱法测定铝矿、铁矿、钙矿、镁矿和锰矿中主要组分[J]. 冶金分析, 2022, 42(4):83-89.
|
| [6] |
Zhang W Y, Xu X H. Determination of major components in aluminum ore,iron ore,calcium ore,magnesium ore and manganese ore by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2022, 42(4):83-89.
|
| [7] |
谢晓雁, 吴文启, 李奋, 等. 离子交换分离—电感耦合等离子体原子发射光谱法测定锰矿中铊[J]. 冶金分析, 2015, 35(8):61-65.
|
| [7] |
Xie X Y, Wu W Q, Li F, et al. Determination of thallium in manganese ore by inductively coupled plasma atomic emission spectrometry after ion exchange separation[J]. Metallurgical Analysis, 2015, 35(8):61-65.
|
| [8] |
姜守君, 高永宏, 胡小耕, 等. 偏硼酸锂熔融ICP-AES测定锰矿石中次量元素[J]. 甘肃科技, 2012, 28(14):35-37.
|
| [8] |
Jiang S J, Gao Y H, Hu X G, et al. Determination of minor elements in manganese ore by lithium metaborate melting ICP-AES[J]. Gansu Science and Technology, 2012, 28(14):35-37.
|
| [9] |
刘灵芝, 邓全道, 许光, 等. 微波消解样品—电感耦合等离子体原子发射光谱法测定锰矿中铝、镁、磷[J]. 理化检验:化学分册, 2011(11):1283-1285.
|
| [9] |
Liu L Z, Deng Q D, Xu G, et al. ICP-AES determination of aluminum,magnesium and phosphorus in manganese ores with microwave assisted sample digestion[J]. Physical Testing and Chemical Analysis,Part B:Chemical Analysis, 2011(11):1283-1285.
|
| [10] |
金献忠, 陈建国, 梁帆, 等. 碱熔融—ICP-AES法对锰矿石中主量、次量与痕量元素的同时测定[J]. 分析测试学报, 2009, 28(2):150-156.
|
| [10] |
Jin X Z, Chen J G, Liang F, et al. Determination of major,minor and trace elements in manganese ores by alkali fusion-ICP-AES[J]. Journal of Instrumental Analysis, 2009, 28(2):150-156.
|
| [11] |
张歌, 刘叶楠, 段宁, 等. 高压密闭消解—电感耦合等离子体质谱法测定锰矿石中钛钒锶[J]. 冶金分析, 2014, 34(12):39-43.
|
| [11] |
Zhang G, Liu Y N, Duan N, et al. Determination of titanium,vanadium and strontium in manganese ore by inductively coupled plasma mass spectrometry with high-pressure closed digestion[J]. Metallurgical Analysis, 2014, 34(12):39-43.
|
| [12] |
吴磊, 刘义博, 王家松, 等. 高压密闭消解—电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J]. 岩矿测试, 2018, 37(6):637-643.
|
| [12] |
Wu L, Liu Y B, Wang J S, et al. Sample treatment methods for determination of rare earth elements in manganese ore by high-pressure closed digestion-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6):637-643.
|
| [1] |
中国国家标准化管理委员会. GB/T1511—2016锰矿石钙和镁含量的测定EDTA滴定法[S]. 北京: 中国标准出版社, 2016.
|
| [1] |
ZHU You-Huan, NIE Fei, ZOU Jia-Zuo, LI Hong-Wei, ZHOU Xue-Cheng, RAN Guang-Hui, LEI Dong. Total rare-earth oxides in stream sediments in the Dechang area: Geochemical characteristics and prospecting targets[J]. Geophysical and Geochemical Exploration, 2025, 49(2): 270-280. |
| [2] |
WAN Wei, WANG Ming-Qi, CHENG Zhi-Zhong, FAN Hui-Hu, ZUO Li-Bo, LI Jun-Hui. An experimental investigation of the CO2 and SO2 gas geochemical survey method for mineral exploration in forested areas[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1137-1146. |
|
|
|
|