|
|
Structure-oriented log-seismic error correction in prestack depth migration |
WANG Bing-Gang1( ), DING Cheng-Zhen1, ZHANG Dan1, DONG Qing-Yu1, CHEN Xin1, WANG Ze2, YANG Yang1, XUAN Rui-Qing1 |
1. Bureau of Geophysical Prospecting Inc., CNPC, Zhuozhou 072750, China 2. Kunlun Digital Technology Co., Ltd., Beijing 100010, China |
|
|
Abstract Log-seismic error correction serves as a primary method for determining Thomsen's compressional-wave anisotropic parameters of vertical transverse isotropy(VTI) media.This method is also an essential processing technique for obtaining accurate depth-migrated images.Conventional log-seismic error correction involves determining the log-seismic errors at well locations and then directly applying planar interpolation to correct the depths of seismic horizons.However,the conventional method can lead to structural distortions and anomalous values of anisotropic parameter δ in areas with significantly varying formation thicknesses.To address this issue,researchers typically manually edit and smooth the anisotropic parameter field and the anisotropic velocity field,consuming considerable manpower and time.Hence,this study proposed a structure-oriented log-seismic error correction method that incorporates the concept of log-seismic error coefficient.The proposed method utilizes formation thicknesses as constraints to perform planar interpolation for log-seismic errors.Moreover,it employs a strategy of sequential calculation and interpolation for log-seismic errors from shallow to deep formations.It yielded log-seismic error distribution values that better conform to formation thickness variations and more stable δ values,without anomalous values.Therefore,the proposed method effectively avoids structural distortions induced by log-seismic error correction while saving manpower and time in practical projects.
|
Received: 05 December 2024
Published: 07 August 2025
|
|
|
|
|
|
Traditional workflow of well-tie correction methodology
|
|
Traditional well-tie correction method
|
|
Structure guided well-tie correction method
|
|
Work flow of structure guided well-tie correction methodology
|
|
Schematic of strike-slip fault
|
|
Formation thickness map and mistie value map calculated by traditional method and new method
|
|
Section of anisotropic parameter δ calculated by new method(a) and traditional method(b)
|
|
Pre-stack depth migration section after well-tie correction calculated by new method(a) and traditional method(b)
|
[1] |
李忠, 赵锐锐, 周强, 等. 起伏地表TTI 各向异性速度建模技术在柯东复杂山地的应用[J]. 石油地球物理勘探, 2022, 57(S1):70-77.
|
[1] |
Li Z, Zhao R R, Zhou Q, et al. Application of irregular surface TTI anisotropic velocity modeling technology in Kedong complex mountains[J]. Oil Geophysical Prospecting, 2022, 57(S1):70-77.
|
[2] |
李建国, 李彦鹏, 郭晓玲. VTI介质试射射线追踪[J]. 石油地球物理勘探, 2010, 45(4):491-496.
|
[2] |
Li J G, Li Y P, Guo X L. VTI medium test-firing ray tracing[J]. Oil Geophysical Prospecting, 2010, 45(4):491-496.
|
[3] |
刘彦, 陈赟, 王者顺. TI介质各向异性速度多参数分析[J]. 地球物理学进展, 2005, 20(2):540-544.
|
[3] |
Liu Y, Chen Y, Wang Z S. Multi-parameter analysis of anisotropy velocity in TI media[J], Progress in Geophysics, 2005, 20(2):540-544.
|
[4] |
刁文川, 刘哲生, 蔡希玲, 等. 浅述地震各向异性[J]. 地球物理勘探, 2007, 42(S1):106-110.
|
[4] |
Diao W C, Liu Z S, Cai X L, et al. A brief discussion on seismic anisotropy[J]. Oil Geophysical Prospecting, 2007, 42(S1):106-110.
|
[5] |
郭立鹏, 杨勤勇, 李震春, 等. 复杂各向异性介质初至波射线追踪[J]. 石油物探, 2016, 55(1):18-24.
|
[5] |
Guo L P, Yang Q Y, Li Z C, et al. First arrival ray tracing in complex anisotropic medium[J]. Geophysical Prospecting for Petroleum, 2016, 55(1):18-24.
|
[6] |
李源, 刘伟, 刘微, 等. 各向异性全速度建模技术在山地地震成像中的应用[J]. 石油物探, 2015, 54(2):157-164.
|
[6] |
Li Y, Liu W, Liu W, et al. Application of anisotropic full velocity modeling in the mountainous seismic imaging[J]. Geophysical Prospecting for Petroleum, 2015, 54(2):157-164.
|
[7] |
邓怀群, 刘雯林. 横向各向同性介质中地震波旅行时的计算[J]. 石油地球物理勘探, 2000, 35(4):508-516.
|
[7] |
Deng H Q, Liu W L. Computation of travel time in transversely isotropic media[J]. Oil Geophysical Prospecting, 2000, 35(4):508-516.
|
[8] |
马德堂, 朱光明. 关于横向各向同性介质中的Thomsen参数取值的讨论[J]. 石油地球物理勘探, 2006, 41(4):431-438.
|
[8] |
Ma D T, Zhu G M. Research on the values of Thomsen parameter in transversely isotropic media[J]. Oil Geophysical Prospecting, 2006, 41(4):431-438.
|
[9] |
刘玉柱, 王光银, 董良国, 等. VTI 介质多参数联合走时层析成像方法[J]. 地球物理学报, 2014, 57(10):3402-3410.
|
[9] |
Liu Y Z, Wang G Y, Dong L G, et al. Joint inversion of VTI parameters using nonlinear traveltime tomography[J]. Chinese Journal of Geophysics, 2014, 57(10):3402-3410.
|
[10] |
杨宗青, 李宏伟, 欧居刚, 等. TTI介质各向异性参数优化提取方法[J]. 石油地球物理勘探, 2020, 55(1):111-116.
|
[10] |
Yang Z Q, Li H W, Ou J G, et al. An optimized method for extracting anisotropic parameters in TTI media[J]. Oil Geophysical Prospecting, 2020, 55(1):111-116.
|
[11] |
刘瑞合, 赵金玉, 印兴耀, 等. VTI介质各向异性参数层析反演策略与应用[J]. 石油地球物理勘探, 2017, 52(3):484-490.
|
[11] |
Liu R H, Zhao J Y, Yin X Y, et al. Strategy of anisotropic parameter tomography inversion in VTI medium[J]. Oil Geophysical Prospecting, 2017, 52(3):484-490.
|
[12] |
裴云龙, 王立歆, 邬达理, 等. 井控各向异性速度建模技术在YKL地区的应用[J]. 石油物探, 2017, 56(3):390-399.
|
[12] |
Pei Y L, Wang L X, Wu D L, et al. The application of well-controlled anisotropy velocity modeling in YKL region[J]. Geophysical Prospecting for Petroleum, 2017, 56(3):390-399.
|
[13] |
王卫, 王佳琦, 古茜. 井震联合构建三维地质导向模型关键技术研究[J]. 录井工程, 2018, 29(2):27-31.
|
[13] |
Wang W, Wang J Q, Gu X. Research on key technologies of joint construction of three-dimensional geological guidance model by well and seismology[J]. Mud Logging Engineering, 2018, 29(2):27-31.
|
[14] |
李继伟, 王平, 张琳, 等. 井震联合处理技术在川西南部地区的应用[C]// 南京: SPG/SEG南京2020年国际地球物理会议,2020:113-116.
|
[14] |
Li J W, Wang P, Zhang L, et al. Application of well-seismic joint processing technology in the Southern Sichuan Basin[C]// Nanjing: SPG/SEG Nanjing 2020 International Geophysical Conference,2020:113-116.
|
[15] |
卢宁, 张玉晓, 杨宏伟, 等. 井震联合深层区域勘探构造建模技术研究[J]. 地质评论, 2021, 67(S1):259-260.
|
[15] |
Lu N, Zhang Y X, Yang H W, et al. Research on structural modeling technology for deep regional exploration combined with well and earthquake[J]. Geological Review, 2021, 67(S1):259-260.
|
[16] |
武丽, 李剑峰, 施炜, 等. 巴楚夏河工区的三维速度建模方法[J]. 石油地球物理勘探, 2006, 41(1):87-92.
|
[16] |
Wu L, Li J F, Shi W, et al. 3-D velocity model-building method in Bachuxia river work zone[J]. Oil Geophysical Prospecting, 2006, 41(1):87-92.
|
[17] |
罗胜元, 何生, 宋国奇, 等. 渤南洼陷井—震速度误差分析和速度模型的建立及应用[J]. 石油物探, 2014, 53(2):196-205.
|
[17] |
Luo S Y, He S, Song G Q, et al. The error analysis between logging and seismic velocity for 3D velocity modeling in Bonan Sag[J]. Geophysical Prospecting for Petroleum, 2014, 53(2):196-205.
|
[18] |
张树林, 姜立红. 多波地震地层各向异性的初步研究和探讨[J]. 物探与化探, 2002, 26(5):384-387.
|
[18] |
Zhang S L, Jiang L H. A preliminary discussion on the application of multiwave seismic data to the study of anisotropy of various formations[J]. Geophysical and Geochemical Exploration2002, 26(5):384-387.
|
[19] |
罗小明, 王世瑞. 纵波VTI介质各向异性参数的求取[J]. 物探与化探, 2006, 30(3):233-235.
|
[19] |
Luo X M, Wang S R. Estimaiton of anisotropy parameters in VTI media using surface P wave data[J]. Geophysical and Geochemical Exploration, 2006, 30(3):233-235.
|
[1] |
ZHANG Jia-Chang, LI Tao, LIANG Hong-Gang, FEI E, SUN Zhi-Yuan, YUE Tong. Strike-slip fault system in the Erbatai area, Tarim Basin[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1588-1598. |
[2] |
YAO Ming. A fault extraction technique based on structure-oriented filtering and its application[J]. Geophysical and Geochemical Exploration, 2024, 48(5): 1313-1321. |
|
|
|
|