|
|
Source excitation characteristics of transient Rayleigh surface waves and the superposition and fusion of multi-dispersion spectra |
CHEN Zhen-Hua1( ), ZHANG Sheng-Biao2, ZENG Qi-Yan3, ZHANG Da-Zhou3( ) |
1. Guangdong Transportation Industry Investment Co., Ltd., Guangzhou 510263, China 2. Hunan Zhili Technology Co., Ltd., Changsha 410036, China 3. School of Geosciences and Info-physics, Central South University, Changsha 410083, China |
|
|
Abstract Offset and source weight constitute critical factors influencing the data acquisition of transient Rayleigh surface waves. Hence, it is necessary to examine the characteristics of dispersion spectra derived from surface wave data acquired under different offsets and source weights. This study investigated the influence of the two critical factors on dispersion spectra through theoretical analysis and numerical simulation. Based on field experiments, this study delved into the characteristics of dispersion spectra from surface wave data collected at various excitation locations of seismic sources with different weights. To address the discrepancies in dispersion spectra caused by varying source locations during the data acquisition of transient surface waves, this study proposed a superposition and fusion method for multi-dispersion spectra, significantly enhancing the effectiveness of surface wave detection results.
|
Received: 12 November 2024
Published: 07 August 2025
|
|
|
|
|
|
Seismic wave record and frequency spectrum analysis of forward modeling in a two-layer medium model
|
|
Seismic wave record and dispersion spectrum after adding noises
|
|
Photographs of the test site and seismic sources
|
|
Schematic diagram of a transient surface wave observing system with multiple offset distances
|
|
Seismic record with different offsets (16-pound hammer)
|
|
Dispersion spectrums with different offsets(16-pound hammer)
|
|
A dispersion spectrum obtained by merging dispersion spectrum with different offsets
|
|
Comparison of dispersion curves with different offsets
|
|
Seismic wave record and dispersion spectrum obtained using hammer sources of different weights
|
|
Seismic wavelet waveforms and frequency spectrums obtained using hammer sources of different weights
|
[1] |
李庆春, 邵广周, 刘金兰, 等. 瑞利面波勘探的过去、现在和未来[J]. 地球科学与环境学报, 2006, 28(3):74-77.
|
[1] |
Li Q C, Shao G Z, Liu J L, et al. Past, present and future of Rayleigh surface wave exploration[J]. Journal of Earth Sciences and Environment, 2006, 28(3):74-77.
|
[2] |
刘道涵, 徐俊杰, 刘磊, 等. 地球物理联合探测在识别岩溶地面塌陷精细结构中的应用——以武汉市为例[J]. 地质与勘探, 2022, 58(4):865-874.
|
[2] |
Liu D H, Xu J J, Liu L, et al. Application of the integrated geophysical methods in the fine exploration of karst collapses:A case study of Wuhan City[J]. Geology and Exploration, 2022, 58(4):865-874.
|
[3] |
夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8):2591-2605.
|
[3] |
Xia J H, Gao L L, Pan Y D, et al. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 2015, 58(8):2591-2605.
|
[4] |
Eker A M, Akgün H, Koçkar M K. Local site characterization and seismic zonation study by utilizing active and passive surface wave methods:A case study for the northern side of Ankara,Turkey[J]. Engineering Geology, 2012,151:64-81.
|
[5] |
李圣林, 胡泽安, 吴海波. 瞬态瑞雷面波勘探中隐伏溶洞的响应特征研究[J]. 物探化探计算技术, 2019, 41(4):541-546.
|
[5] |
Li S L, Hu Z A, Wu H B. Response characteristics of covered karst cave in transient Rayleigh surface wave exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(4):541-546.
|
[6] |
张燕生. 浅层地下空间探测中的多道面波谱分析法[J]. 中国煤炭地质, 2020, 32(7):50-54.
|
[6] |
Zhang Y S. Multichannel surface wave spectral analysis in shallow underground space prospecting[J]. Coal Geology of China, 2020, 32(7):50-54.
|
[7] |
宋先海, 张学强, 王一鸣, 等. 近地表弹性介质瑞利波勘探研究进展与展望[J]. 地质科技通报, 2020, 39(5):173-182.
|
[7] |
Song X H, Zhang X Q, Wang Y M, et al. Recent advances and prospects of near surface elastic Rayleigh waves[J]. Bulletin of Geological Science and Technology, 2020, 39(5):173-182.
|
[8] |
周荣亮, 刘彦华, 徐睿知. 多道瞬态面波在LNG罐区地基勘察中的应用[J]. 工程地球物理学报, 2022, 19(2):162-167.
|
[8] |
Zhou R L, Liu Y H, Xu R Z. Application of multi-channel transient surface wave in settlement investigation of LNG tank farm[J]. Chinese Journal of Engineering Geophysics, 2022, 19(2):162-167.
|
[9] |
徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8):2618-2636.
|
[9] |
Xu Y X, Luo Y H. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics, 2015, 58(8):2618-2636.
|
[10] |
杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J]. 地球物理学报, 2019, 62(1):298-305.
|
[10] |
Yang Z T, Chen X F, Pan L, et al. Multi-channel analysis of Rayleigh waves based on the vector wavenumber tansformation method(VWTM)[J]. Chinese Journal of Geophysics, 2019, 62(1):298-305.
|
[11] |
苏悦, 杨振涛, 杨博, 等. 基于矢量波数变换法的主动源瑞雷波多模式提取方法在近地表地层结构探测中的应用研究[J]. 北京大学学报:自然科学版, 2020, 56(3):427-435.
|
[11] |
Su Y, Yang Z T, Yang B, et al. Application research of active source Rayleigh wave multi-mode extraction method based on vector wavenumber transformation method in near surface stratigraphic structure detection[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3):427-435.
|
[12] |
Xu Y X, Zhang B L, Luo Y H, et al. Surface-wave observations after integrating active and passive source data[J]. The Leading Edge, 2013, 32(6):634-637.
|
[13] |
Liu Y, Xia J H, Cheng F, et al. Pseudo-linear-array analysis of passive surface waves based on beamforming[J]. Geophysical Journal International, 2019, 221(1):640-650.
|
[14] |
Liu Y, Xia J H, Xi C Q, et al. Improving the retrieval of high-frequency surface waves from ambient noise through multichannel-coherency-weighted stack[J]. Geophysical Journal International, 2021, 227(2):776-785.
|
[15] |
Satoh T. S-wave velocity structure of the Taichung basin,Taiwan,estimated from array and single-station records of microtremors[J]. Bulletin of the Seismological Society of America, 2004, 91(5):1267-1282.
|
[16] |
刘志坤, 黄金莉. 利用背景噪声互相关研究汶川地震震源区地震波速度变化[J]. 地球物理学报, 2010, 53(4):853-863.
|
[16] |
Liu Z K, Huang J L. Temporal changes of seismic velocity around the Wenchuan earthquake fault zone from ambient seismic noise correlation[J]. Chinese Journal of Geophysics, 2010, 53(4):853-863.
|
[17] |
Pan Y D, Xia J H, Xu Y X, et al. Delineating Shallow S-wave velocity structure using multiple ambient-noise surface-wave methods:An example from western Junggar,China[J]. Bulletin of the Seismological Society of America, 2016, 106(2):327-336.
|
[18] |
李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报, 2020, 63(1):247-255.
|
[18] |
Li X Y, Chen X F, Yang Z T, et al. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal of Geophysics, 2020, 63(1):247-255.
|
[19] |
秦长春, 王国顺, 李婧. 主动源面波采集装置改进及在地铁施工勘察中的应用[J]. 物探与化探, 2024, 48(1):264-271.
|
[19] |
Qin C C, Wang G S, Li J. Improvement in active-source surface wave acquisition device and its application in subway construction exploration[J]. Geophysical and Geochemical Exploration, 2024, 48(1):264-271.
|
[20] |
Xu Y X, Xia J H, Miller R D. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source[J]. Journal of Applied Geophysics, 2006, 59(2):117-125.
|
[21] |
Park C B, Miller R D, Xia J H. Multichannel analysis of surface waves[J]. 1999, 64(3):800-808.
|
[22] |
Xu Y X, Xia J H, Miller R D. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach[J]. Geophysics, 2007, 72(5):SM147-SM153.
|
[23] |
杨培杰, 印兴耀. 地震子波提取方法综述[J]. 石油地球物理勘探, 2008, 43(1):123-128,2.
|
[23] |
Yang P J, Yin X Y. Summary of seismic wavelet pick-up[J]. Oil Geophysical Prospecting, 2008, 43(1):123-128,2.
|
|
|
|