|
|
Bedrock fracture prediction and pore-fracture overlay analysis: A case study of the Kun 2 block in the Kunteyi gas field |
MA Yuan-Kun1,2( ), WEN Zhong-Lin1,2, LI Ji-Yong1,2, WANG Hai-Cheng1,2, CHEN Fang-Fang1,2, XU Yu1,2, ZHANG Lei1,2, PAN Yi-Hong3 |
1. Exploration and Development Research Institute of PetroChina Qinghai Oilfield Company, Dunhuang 736202, China 2. Key Laboratory of Oil and Gas Geology in Salinized Lake Basin of Qinghai Province, Dunhuang 736202, China 3. PST Service Corp., Beijing 100101, China |
|
|
Abstract This study aims to determine the development of dissolution pores and fractures in the target bedrock reservoir space in the Kun 2 block in the Kunteyi gas field within the Qaidam Basin. The seismic data were classified into 12 attributes in five major categories for fracture prediction and comparative analysis of bedrock reservoirs. The results show that the maximum likelihood attribute aligned highly with the well data, with high vertical and horizontal resolution, superior to curvature, coherence, discontinuity, and similarity attributes. Moreover, the favorable areas for the distribution of bedrock reservoirs were effectively predicted using the dissolution pore-fracture overlay analysis method, providing a basis for subsequent exploitation well deployment.
|
Received: 22 October 2024
Published: 22 July 2025
|
|
|
|
|
|
Top boundary structure of bedrock in Kun 2 block of Kunteyi gas field
|
|
Stratigraphic column of the Lengbei Slope
|
|
Comparison of fracture prediction
|
|
Comparison of predicted fractures in drilled wells with imaging logging and logging interpretation
|
|
Intersection diagram of logging interpretation porosity and seismic prediction fracture strength
|
|
Predictive profiles of fractures in Kun 101, Kun 2-2, Kun 2-X1, Kun 2, and Kun 1-1 wells
|
|
Prediction plan distribution of fractures in the bedrock 0~300 m section of Kunteyi Block
|
|
Cross section of Kun 101, Kun 2-2, Kun 2-X1, Kun 2, and Kun 1-1 wells with overlapping boreholes and fractures
|
|
Distribution plan of segmented holes and fractures in the bedrock of Kunteyi Block
|
|
Distribution plan of hole seam overlay in the 0~300 m section of Kunteyi Block
|
|
Comprehensive evaluation of Kunteyi Block 0~300 m section
|
[1] |
苟迎春, 李延丽, 赵为永, 等. 阿尔金山前基岩气藏储层特征差异性研究[J]. 东华理工大学学报:自然科学版, 2023, 46(5):499-509.
|
[1] |
Gou Y C, Li Y L, Zhao W Y, et al. Study on the difference in reservoir characteristics of bedrock gas reservoir in the altun piedmont[J]. Journal of East China University of Technology:Natural Science Edition, 2023, 46(5):499-509.
|
[2] |
李欣. 阿尔金山前带东段基岩储层特征研究[D]. 北京: 中国石油大学(北京), 2019.
|
[2] |
Li X. Study on the characteristics of bedrock reservoir in the eastern part of Altun Mountain front belt[D]. Beijing: China University of Petroleum (Beijing), 2019.
|
[3] |
孙秀建, 杨巍, 白亚东, 等. 柴达木盆地基岩油气藏储盖特征及组合方式[J]. 天然气地球科学, 2019, 30(2):228-236.
|
[3] |
Sun X J, Yang W, Bai Y D, et al. Characterization of the reservoir-caprock assemblage of the basement reservoir in the Qaidam Basin,China[J]. Natural Gas Geoscience, 2019, 30(2):228-236.
|
[4] |
张文, 伍新明, 漆杰. 地震几何属性的快速算法实现[J]. 地球物理学报, 2023, 66(8):3374-3390.
|
[4] |
Zhang W, Wu X M, Qi J. Fast computation of seismic geometric attributes[J]. Chinese Journal of Geophysics, 2023, 66(8):3374-3390.
|
[5] |
曹欢, 赵杨, 帅达, 等. 基于HTI介质地震曲率属性的地应力估算方法及其在威远地区的应用[J]. 地球物理学报, 2024, 67(5):1970-1986.
|
[5] |
Cao H, Zhao Y, Shuai D, et al. Using 3D seismic data to estimate stress based on seismic curvature attribute of HTI medium:Application to the Weiyuan,southern Sichuan Basin,China[J]. Chinese Journal of Geophysics, 2024, 67(5):1970-1986.
|
[6] |
杨国权, 刘延利, 张红文. 曲率属性计算方法研究及效果分析[J]. 地球物理学进展, 2015, 30(5):2282-2286.
|
[6] |
Yang G Q, Liu Y L, Zhang H W. The calculation method of curvature attributes and its effect analysis[J]. Progress in Geophysics, 2015, 30(5):2282-2286.
|
[7] |
Chen X H, Yang W, He Z H, et al. The algorithm of 3D multi-scale volumetric curvature and its application[J]. Applied Geophysics, 2012, 9(1):65-72.
|
[8] |
王楷, 印兴耀, 马正乾, 等. 基于多方位相干属性的断裂预测技术[J]. 地球物理学报, 2023, 66(9):3828-3839.
|
[8] |
Wang K, Yin X Y, Ma Z Q, et al. Fault prediction method based on multi-azimuth coherence attribute[J]. Chinese Journal of Geophysics, 2023, 66(9):3828-3839.
|
[9] |
程晓艳, 胡曦, 罗颖, 等. 基于相干约束的页岩裂缝OVT地震预测方法研究及应用[J]. 断块油气田, 2023, 30(6):982-990.
|
[9] |
Cheng X Y, Hu X, Luo Y, et al. Research and application of OVT seismic prediction method for shale fractures based on coherence constraints[J]. Fault-Block Oil & Gas Field, 2023, 30(6):982-990.
|
[10] |
肖湘, 尹成, 彭达, 等. 薄砂岩储层内部不连续性检测技术[J]. 石油物探, 2022, 61(4):635-646.
|
[10] |
Xiao X, Yin C, Peng D, et al. Detection of discontinuities inside a thin sandstone reservoir[J]. Geophysical Prospecting for Petroleum, 2022, 61(4):635-646.
|
[11] |
黎康毅, 陈学华, 吴昊杰, 等. 地震不连续信息的自适应方向增强检测及应用[J]. 石油地球物理勘探, 2023, 58(6):1446-1453.
|
[11] |
Li K Y, Chen X H, Wu H J, et al. Adaptive directional enhancement detection and application of seismic discontinuity information[J]. Oil Geophysical Prospecting, 2023, 58(6):1446-1453.
|
[12] |
范廷恩, 张晶玉, 王海峰, 等. 砂岩储层横向不连续性检测技术组合及应用[J]. 石油地球物理勘探, 2021, 56(1):155-163,10-11.
|
[12] |
Fan T E, Zhang J Y, Wang H F, et al. Combination and application of detecting technology for lateral discontinuity of sandstone reservoir[J]. Oil Geophysical Prospecting, 2021, 56(1):155-163,10-11.
|
[13] |
张瑞, 文晓涛, 李世凯, 等. 分频蚂蚁追踪在识别深层小断层中的应用[J]. 地球物理学进展, 2017, 32(1):350-356.
|
[13] |
Zhang R, Wen X T, Li S K, et al. Application of frequency division ant-tracking in identifying deep minor fault[J]. Progress in Geophysics, 2017, 32(1):350-356.
|
[14] |
谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5):1295-1302.
|
[14] |
Xie Q H, Jiang L W, Zhao C D, et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1295-1302.
|
[15] |
秦德文, 刘庆文, 李琴. 基于保边滤波的断层似然属性在西湖凹陷复杂断裂识别中的应用[J]. 海洋地质前沿, 2024, 40(5):91-98.
|
[15] |
Qin D W, Liu Q W, Li Q. Application of fault likelihood attribute based on edge-preserved filter in complex fault identification of Xihu Sag[J]. Marine Geology Frontiers, 2024, 40(5):91-98.
|
[16] |
李飞跃, 王涛, 曾清波, 等. 基于构造导向的高清似然属性在白云凹陷深层断裂预测中的应用[J]. 石油物探, 2023, 62(1):163-172.
|
[16] |
Li F Y, Wang T, Zeng Q B, et al. Application of high-definition likelihood attributes based on structure orientation in the prediction of deep faults in Baiyun Sag[J]. Geophysical Prospecting for Petroleum, 2023, 62(1):163-172.
|
[17] |
甄宗玉, 郑江峰, 孙佳林, 等. 基于最大似然属性的断层识别方法及应用[J]. 地球物理学进展, 2020, 35(1):374-378.
|
[17] |
Zhen Z Y, Zheng J F, Sun J L, et al. Fault identification method based on the maximum likelihood attribute and its application[J]. Progress in Geophysics, 2020, 35(1):374-378.
|
[18] |
王腊梅, 娄敏, 李炳颖, 等. 最大似然属性在致密砂岩储层微断裂识别中的应用——以西湖凹陷花港组为例[J]. 石油地质与工程, 2024, 38(1):1-5,12.
|
[18] |
Wang L M, Lou M, Li B Y, et al. Maximum likelihood attribute and its application in micro-fractures identification of tight sandstone reservoirs:A case study of Huagang Formation in Xihu Sag[J]. Petroleum Geology and Engineering, 2024, 38(1):1-5,12.
|
[19] |
王光华. 柴达木盆地阿尔金山前带东段断裂特征及演化[D]. 成都: 西南石油大学, 2015.
|
[19] |
Wang G H. Characteristics and evolution of faults in the eastern part of Altun Mountain front belt in Qaidam Basin[D]. Chengdu: Southwest Petroleum University, 2015.
|
[20] |
李俊, 张西营, 张星, 等. 柴达木盆地昆特依盐湖含杂卤石地层高分辨率矿物学研究[J]. 地质学报, 2021, 95(7):2138-2149.
|
[20] |
Li J, Zhang X Y, Zhang X, et al. High-resolution mineralogical investigations on polyhalite-bearing strata in the Kunteyi salt lake,Qaidam basin[J]. Acta Geologica Sinica, 2021, 95(7):2138-2149.
|
[21] |
汪泽成, 江青春, 王居峰, 等. 基岩油气成藏特征与中国陆上深层基岩油气勘探方向[J]. 石油勘探与开发, 2024, 51(1):28-38.
|
[21] |
Wang Z, Jiang Q, Wang J, et al. Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China[J]. Petroleum Exploration and Development, 2024, 51(1):28-38.
|
[22] |
陈刚, 李世昌, 宋斯宇, 等. 2024. 地震叠后和叠前混合驱动下的页岩油储层多尺度裂缝预测方法[J]. 地球物理学报, 67(7):2830-2849.
|
[22] |
Chen G, Li S C, Song S Y, et al. 2024. Multi-scale fracture prediction of shale oil reservoir driven by the combination of posstack and pre-stack seismic data[J]. Chinese J.Geophys., 67(7):2830-2849.
|
[23] |
张冰, 徐嘉亮, 王维红, 等. 基于最大似然属性和拉普拉斯金字塔的断面波增强方法建立[J]. 地球物理学报, 2021, 64(8):2829-2837.
|
[23] |
Zhang B, Xu J L, Wang W H, et al. Fault-surface wave enhancement technology based on maximum likelihood attributes and Laplace pyramid[J]. Chinese Journal of Geophysics, 2021, 64(8):2829-2837.
|
[24] |
马德波, 赵一民, 张银涛, 等. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例[J]. 天然气地球科学, 2018, 29(6):817-825.
|
[24] |
Ma D B, Zhao Y M, Zhang Y T, et al. Application of maximum likelihood attribute to fault identification:A case study of Rewapu block in Halahatang area,Tarim Basin,NW China[J]. Natural Gas Geoscience, 2018, 29(6):817-825.
|
|
|
|