|
|
Three-dimensional numerical simulations of spectral induced polarization for detecting landfill leachate |
SHI Jing1( ), XIONG Bin1,2( ), XU Zhi-Feng1, HUANG Li-Shan3, LU Yu-Guo1,4, LI Yao-Xin1, YU Jia-Min1 |
1. College of Earth Sciences, Guilin University of Technology, Guilin 541006, China 2. Key Laboratory of Geophysical Exploration Technology in Southern Karst Area, Chinese Geophysical Society, Guilin 541006, China 3. China Nonferrous Metals (Guilin) Geology and Mining Co., Ltd., Guilin 541004, China 4. Xining Natural Resources Comprehensive Survey Center, China Geological Survey, Xining 810021, China |
|
|
Abstract The contamination of soils and groundwater caused by landfill leachate is increasingly prominent. Given the distinctive electrical properties of leachate, such as low resistivity, high polarization, high time constant, and low-frequency correlation coefficient, this study performed three-dimensional finite element numerical simulations of landfills using the spectral induced polarization (SIP) method. The aim is to explore the theoretical effects of this method in detecting landfill leachate. First, this study conducted forward modeling for typical geoelectric models using the algorithm developed in this study. The result revealed a maximum relative error between the numerical and analytical solutions of less than 2.5%, demonstrating the algorithm's accuracy and effectiveness. Second, the parameters of the SIP model were set based on the actual electrical characteristics of landfills, ensuring that the numerical simulations closely reflected actual conditions. Finally, SIP anomaly responses were compared and analyzed for landfill leachate leakage under different scenarios. The results indicate that the leachate locations can be accurately delineated using the apparent complex resistivity's phase and apparent dispersion, regardless of whether landfills are equipped with high-resistivity impermeable walls. For leachate plumes of the same scale, shallower locations corresponded to more pronounced anomaly morphologies of apparent complex resistivity's phase and apparent dispersion. Compared to the direct current resistivity method, the SIP method can detect richer underground electrical parameters, achieving better application effects in detecting landfill leachate.
|
Received: 14 September 2024
Published: 07 August 2025
|
|
|
|
|
| ρ0/(Ω·m) | m | τ/s | c | h/m | Layer1 | 20 | 0.1 | 1.0 | 0.25 | 10 | Layer2 | 100 | 0.5 | 1.0 | 0.25 | - |
|
Parameters of horizontal layered medium model
|
|
The real part (a) and imaginary part (b) of the apparent complex resistivity sounding curve by Schlumberger configuration
|
|
The relative error of the apparent complex resistivity sounding curve by Schlumberger configuration
|
| ρ0/(Ω·m) | m | τ/s | c | 围岩 | 100 | 0.001 | 0.01 | 0.25 | 填埋区 | 60 | 0.001 | 0.10 | 0.25 | 防渗墙 | 1 000 | 0.001 | 0.01 | 0.25 | 渗漏液 | 0.4 | 0.600 | 10.0 | 0.10 |
|
Induced polarization parameters of media in landfill
|
|
Landfill without impermeable walls and no leachate of model 1
|
|
The contour of Dipole-Dipole configuration apparent complex resistivity components real part (a), imaginary part (b), phase (c) (f=1 Hz) and apparent dispersion (d) of model 1
|
|
Landfill without impermeable walls for central leakage of model 2
|
|
The contour of Dipole-Dipole configuration apparent complex resistivity components real part (a), imaginary part (b), phase (c) (f=1 Hz) and apparent dispersion (d) of model 2
|
|
Landfill without impermeable walls for bottom leakage of model 3
|
|
The contour of Dipole-Dipole configuration apparent complex resistivity components real part (a), imaginary part (b), phase (c) (f=1 Hz) and apparent dispersion (d) of model 3
|
|
Landfill with impermeable walls and no leachate of model 4
|
|
The contour of Dipole-Dipole configuration apparent complex resistivity components real part (a),imaginary part (b), phase (c) (f=1 Hz) and apparent dispersion (d) of model 4
|
|
Landfill with impermeable walls for central leakage of model 5
|
|
The contour of Dipole-Dipole configuration apparent complex resistivity components real part (a),imaginary part (b), phase (c) (f=1 Hz) and apparent dispersion (d) of model 5
|
|
Landfill with impermeable walls for bottom leakage of model 6
|
|
The contour of Dipole-Dipole configuration apparent complex resistivity components real part (a), imaginary part (b), phase (c) (f=1 Hz) and apparent dispersion (d) of model 6
|
[1] |
Sykes J F, Pahwa S B, Lantz R B, et al. Numerical simulation of flow and contaminant migration at an extensively monitored landfill[J]. Water Resources Research, 1982, 18(6):1687-1704.
|
[2] |
程业勋, 刘海生, 赵章元. 城市垃圾污染的地球物理调查[J]. 工程地球物理学报, 2004, 1(1):26-30.
|
[2] |
Cheng Y X, Liu H S, Zhao Z Y. Investigation of urban landfill contamination using geophysical methods[J]. Chinese Journal of Engineering Geophysics, 2004, 1(1):26-30.
|
[3] |
刘兆平, 杨进, 罗水余. 地球物理方法对垃圾填埋场探测的有效性试验研究[J]. 地学前缘, 2010, 17(3):250-258.
|
[3] |
Liu Z P, Yang J, Luo S Y. The application of geophysical methods to the analysis of landfill[J]. Earth Science Frontiers, 2010, 17(3):250-258.
|
[4] |
马媛媛, 郭秀军, 朱大伟, 等. 生活垃圾渗滤液污染砂土电阻率变化机制实验研究[J]. 地球物理学进展, 2010, 25(3):1098-1104.
|
[4] |
Ma Y Y, Guo X J, Zhu D W, et al. Investigation on electrical resistivity of soils by contaminated domestic landfill-leachate[J]. Progress in Geophysics, 2010, 25(3):1098-1104.
|
[5] |
刘国辉, 徐晶, 王猛, 等. 高密度电阻率法在垃圾填埋场渗漏检测中的应用[J]. 物探与化探, 2011, 35(5):680-683,691.
|
[5] |
Liu G H, Xu J, Wang M, et al. The application of high-density resistivity method to landfill leakage detection[J]. Geophysical and Geochemical Exploration, 2011, 35(5):680-683,691.
|
[6] |
邱波, 王斌战, 周世昌, 等. 高密度电法在垃圾填埋场渗滤液调查中的研究[J]. 资源环境与工程, 2020, 34(S2):128-133,176.
|
[6] |
Qiu B, Wang B Z, Zhou S C, et al. Study on high density electrical method in landfill leachate investigation[J]. Resources Environment & Engineering, 2020, 34(S2):128-133,176.
|
[7] |
Kusuyama E, Hidari K, Kamura K. Effectiveness of resistivity monitoring for unsaturated water flow in landfill sites[J]. Journal of Material Cycles and Waste Management, 2020, 22(6):2029-2038.
|
[8] |
王旭明, 马若龙, 刘现锋, 等. 综合物探技术在垃圾填埋场渗漏探测中的应用研究[J]. 工程地球物理学报, 2021, 18(6):903-910.
|
[8] |
Wang X M, Ma R L, Liu X F, et al. Application of integrated geophysical prospecting technology in the landfill leakage detection[J]. Chinese Journal of Engineering Geophysics, 2021, 18(6):903-910.
|
[9] |
李晓, 刘志远, 张云鹏, 等. 河北省平原区填埋物污染的电性识别特征[J]. 河北工程大学学报:自然科学版, 2022, 39(2):92-99.
|
[9] |
Li X, Liu Z Y, Zhang Y P, et al. Electrical identification characteristics of landfill pollution in Hebei plain area[J]. Journal of Hebei University of Engineering:Natural Science Edition, 2022, 39(2):92-99.
|
[10] |
康方平, 邓岳, 曹创华, 等. 等值反磁通瞬变电磁法在城市生活垃圾填埋场渗漏检测中的应用[J]. 工程地球物理学报, 2023, 20(6):725-732.
|
[10] |
Kang F P, Deng Y, Cao C H, et al. Application of opposing coils transient electromagnetic method in leakage detection of urban domestic waste landfills[J]. Chinese Journal of Engineering Geophysics, 2023, 20(6):725-732.
|
[11] |
黄凯, 农观海, 蒋海民, 等. 大定源瞬变电磁法在垃圾填埋场渗漏调查中的应用[J]. 工程地球物理学报, 2023, 20(4):462-470.
|
[11] |
Huang K, Nong G H, Jiang H M, et al. Application of large fixed source transient electromagnetic method in landfill seepage investigation[J]. Chinese Journal of Engineering Geophysics, 2023, 20(4):462-470.
|
[12] |
Moser C, Binley A, Orozco A F. 3D electrode configurations for spectral induced polarization surveys of landfills[J]. Waste Management, 2023,169:208-222.
|
[13] |
Xia T, Meng J, Ding B T, et al. Integration of hydrochemical and induced polarization analysis for leachate localization in a municipal landfill[J]. Waste Management, 2023,157:130-140.
|
[14] |
Dagwar P P, Dutta D. Landfill leachate a potential challenge towards sustainable environmental management[J]. Science of the Total Environment, 2024,926:171668.
|
[15] |
Ma X M, Zhang J M, Schwartz N, et al. Characterizing landfill extent,composition,and biogeochemical activity using electrical resistivity tomography and induced polarization under varying geomembrane coverage[J]. Geophysics, 2024, 89(4):E151-E164.
|
[16] |
刘崧. 谱激电法[M]. 武汉: 中国地质大学出版社,1998.
|
[16] |
Liu S. Spectral induced polarization method[M]. Wuhan: China University of Geosciences Press,1998.
|
[17] |
徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社,1994:178-183.
|
[17] |
Xu S Z. FEM in Geophysics[M]. Beijing: Science Press,1994:178-183.
|
[18] |
阮百尧, 熊彬, 徐世浙. 三维地电断面电阻率测深有限元数值模拟[J]. 地球科学, 2001, 26(1):73-77.
|
[18] |
Ruan B Y, Xiong B, Xu S Z. Finite element method for modeling resistivity sounding on 3-d geoelectric section[J]. Earth Science, 2001, 26(1):73-77.
|
[19] |
Pelton W H, Ward S H, Hallof P G, et al. Mineral discrimination and removal of inductive coupling with multifrequency ip[J]. Geophysics, 2012, 43(3):588-609.
|
[20] |
Davis T A, Duff I S. An unsymmetric-pattern multifrontal method for sparse LU factorization[J]. SIAM Journal on Matrix Analysis and Applications, 1997, 18(1):140-158.
|
[21] |
熊彬, 徐志锋, 蔡红柱. MATLAB地球物理科学计算实战[M]. 武汉: 中国地质大学出版社, 2020.
|
[21] |
Xiong B, Xu Z F, Cai H Z. MATLAB geophysical science computing[M]. Wuhan: China University of Geosciences Press, 2020.
|
[22] |
Rezaeisabzevar Y, Bazargan A, Zohourian B. Landfill site selection using multi criteria decision making:Influential factors for comparing locations[J]. Journal of Environmental Sciences, 2020,93:170-184.
|
[23] |
程志平. 电法勘探教程[M]. 北京: 冶金工业出版社, 2007.
|
[23] |
Cheng Z P. Electrical Exploration Tutorial[M]. Beijing: Metallurgical Industry Press, 2007.
|
[24] |
程业勋, 杨进. 环境地球物理学概论[M]. 北京: 地质出版社, 2005.
|
[24] |
Cheng Y X, Yang J. An introduction to environmental geophysics[M]. Beijing: Geological Publishing House, 2005.
|
[25] |
赵燕茹, 陈湘生, 黄力平, 等. 垃圾土电阻率特性试验研究[J]. 岩土工程学报, 2015, 37(12):2205-2216.
|
[25] |
Zhao Y R, Chen X S, Huang L P, et al. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12):2205-2216.
|
[1] |
LIN Xing-Long, GU Guan-Wen, NIU Xing-Guo, WU Ye, WANG Shun-Ji, WANG Ying-Jie, CAO Lai. Numerical simulation of MT tipper response based on 3D fault models[J]. Geophysical and Geochemical Exploration, 2025, 49(1): 82-99. |
[2] |
YUN Long, CHEN Su, FU Lei, ZHUANG Hai-Yang, WANG Ju. Seismic response characteristics of the cavern group of the Beishan underground research laboratory for the geological disposal of high-level radioactive waste[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1519-1529. |
|
|
|
|