|
|
Geochemical exploration-based discovery of the Baiguo lithium-bearing porcelain stone deposit in Jiangxi Province, China |
ZHANG Ming-Jun, YAN Xin-Hua( ), XIONG Guang-Qiang, LUO Xian-Ming, ZHU Wen-Hui, YE Yue-Chen |
Geophysical & Geochemical Exploration Brigade of Jiangxi, Nanchang 330025, China |
|
|
Abstract The Baiguo lithium-bearing porcelain stone deposit in Jiangxi Province, China is located in the southern Jiuling uplift within the Jiuling rare metal metallogenic belt. This large altered granite-hosted lithium-bearing porcelain stone deposit was discovered by the Geophysical and Geochemical Exploration Brigade of Jiangxi Bureau of Geology using geochemical exploration methods and assessed using geological methods. The prospecting process in this study involved the following aspects: identifying the potential prospecting area through regional geochemical exploration, pinpointing the prospecting target based on the 1∶50,000 stream sediment survey, delineating the lithium anomaly range and morphology based on the 1∶10,000 soil survey, determining the cause of anomalies through follow-up geochemical surveys, defining the spatial distributions of ore bodies through trenching exploration and drilling engineering, and ascertaining the occurrence state and selectivity of lithium based on experimental tests. This prospecting process demonstrates the fast, direct, cost-effective, and efficient characteristics of geochemical exploration methods and their superiority and significance in mineral exploration. Notably, to achieve satisfactory prospecting results, the geochemical exploration for lithium should attach great importance to the geochemical enrichment patterns of lithium, the scientific interpretation of anomalies, and the close association with geological work.
|
Received: 06 September 2024
Published: 07 August 2025
|
|
|
|
|
|
Geology of lithium bearing porcelain stone ore in Baiguo 1—Holocene Series Lianwei Formation;2—strong albitization medium-fine grain muscovite-granite in early Cretaceous;3—weak-medium albitization medium-fine grain muscovite monzonitic granite in early Cretaceous;4—fine grain muscovite monzonitic granite in early Cretaceous;5—medium-fine grain biotite-muscovite monzonitic granite with speckled crystals in early Cretaceous;6—medium-coarse grain porphyritic biotite-muscovite monzonitic granite in late Jurassic;7—medium grain porphyritic biotite-muscovite monzonitic granite in late Jurassic;8—medium-fine grain porphyritic biotite-muscovite monzonitic granite in late Jurassic;9—granite vein;10—quartz vein;11—lithofacies boundary;12—scope of the census area
|
|
Analysis of anomalies of 1∶200,000 stream sediments in Ganfang 1—Paleogene System Wuning Group;2—Cretaceous Tangbian Formation;3—Cretaceous Hekou Formation;4—Triassic Anyuan Formation;5—Permian Longtan Formation;6—Permian Maokou Formation;7—Permian Xiaojiangbian Formation;8—Qingbaikou system Anlelin Formation;9—Qingbaikou system Yifeng Formation;10—medium-fine grain muscovite monzonitic granite in the early Cretaceous;11—fine grain muscovite monzonitic granite in the early Cretaceous;12—medium-fine grain monzonitic granite in the early Cretaceous;13—biotite-muscovite monzonitic granite in late Jurassic;14—Neoproterozoic biotite quartz-mica-diorite; 15—granite vein;16—diabase vein;17—1∶50,000 measurement range of stream sediment;18—1∶10,000 measurement range of soil;19—scope of the census area
|
|
Analysis of anomalies of 1∶50,000 stream sediments in Ganfang 1—Holocene Series Lianwei Formation;2—strong albitization medium-fine grain muscovite-granite in early Cretaceous;3—weak-medium albitization medium-fine grain muscovite monzonitic granite in early Cretaceous;4—fine grain muscovite monzonitic granite in early Cretaceous;5—medium-fine grain biotite-muscovite monzonitic granite with speckled crystals in early Cretaceous;6—medium-coarse grain porphyritic biotite-muscovite monzonitic granite in late Jurassic;7—Neoproterozoic fine-grained biotite granodiorite with few or no speckled crystals; 8—Neoproterozoic fine biotite tonalite with speckled crystals;9—Neoproterozoic medium-fine biotite granodiorite with speckled crystals;10—acid vein(γ—granite、ι—aplite、υπ—felsophyre );11—quartz vein;12—1∶10,000 measurement range of soil;13—lithofacies boundary;14—scope of the census area;15—anomalous number
|
|
Analysis of 1∶10 000 soil anomalies in abnormal high value area of HS-1 stream sediments 1—strong albitization medium-fine grain muscovite-granite in early Cretaceous;2—weak-medium albitization medium-fine grain muscovite monzonitic granite in early Cretaceous;3—fine grain muscovite monzonitic granite in early Cretaceous;4—medium-fine grain biotite-muscovite monzonitic granite with speckled crystals in early Cretaceous;5—medium grain porphyritic biotite-muscovite monzonitic granite in late Jurassic;6—lithofacies boundary
|
[1] |
江西省地质矿产勘查开发局. 江西省环境地质志[M]. 北京: 地质出版社, 2017.
|
[1] |
Jiangxi Provincial Bureau of Geology and Mineral Resources Exploration and Development. Environmental geology of Jiangxi Province[M]. Beijing: Geological Publishing House, 2017.
|
[2] |
徐喆, 张芳荣, 张福神, 等. 江西硬岩型锂矿类型划分及其找矿启示[J]. 华东地质, 2024, 45(1):62-77.
|
[2] |
Xu Z, Zhang F R, Zhang F S, et al. Classification of hard rock lithium deposits in Jiangxi Province and its implication for prospecting[J]. East China Geology, 2024, 45(1):62-77.
|
[3] |
吴学敏, 周敏娟, 罗喜成, 等. 江西西北部锂及稀有金属成矿条件及找矿潜力分析[J]. 华东地质, 2016, 37(4):275-283.
|
[3] |
Wu X M, Zhou M J, Luo X C, et al. The metallogenic conditions and prospecting potential of lithium and rare metals in northwestern Jiangxi[J]. East China Geology, 2016, 37(4):275-283.
|
[4] |
潘方, 袁智, 熊光强, 等. 江西上富—甘坊地区地球化学异常特征及锂等稀有金属找矿预测[J]. 安徽地质, 2022, 32(3):202-208.
|
[4] |
Pan F, Yuan Z, Xiong G Q, et al. Features of geochemical anomalies and prognosis of mineralization potentiality of lithium and other rare metals in the Shangfu-Ganfang area,Jiangxi Province[J]. Geology of Anhui, 2022, 32(3):202-208.
|
[5] |
陈祥云, 吴俊华, 唐维新, 等. 赣西地区新探明巨量花岗岩型锂矿资源[J]. 地球科学, 2023, 48(10):3957-3960.
|
[5] |
Chen X Y, Wu J H, Tang W X, et al. Newly found giant granite-associated lithium resources in the western Jiangxi Province,South China[J]. Earth Science, 2023, 48(10):3957-3960.
|
[6] |
奚小环. 成矿地球化学:科学问题与研究思路[J]. 物探与化探, 2024, 48(4):891-917.
|
[6] |
Xi X H. Metalleogenic geochemistry:Science problems and research ideas[J]. Geophysical and Geochemical Exploration, 2024, 48(4):891-917.
|
[7] |
薛颖瑜, 刘海洋, 孙卫东. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 2021, 45(6):1202-1215.
|
[7] |
Xue Y Y, Liu H Y, Sun W D. The geochemical properties and enrichment mechanism of lithium[J]. Geotectonica et Metallogenia, 2021, 45(6):1202-1215.
|
[8] |
侯占德, 赵正, 柳振江, 等. 南岭花岗岩区锂铍铌钽成矿规律与找矿方向[J]. 岩石学报, 2023, 39(7):1950-1972.
|
[8] |
Hou Z D, Zhao Z, Liu Z J, et al. Metallogenetic regularity and prospecting direction of granite related Li-Be-Nb-Ta deposits in the Nanling region,South China[J]. Acta Petrologica Sinica, 2023, 39(7):1950-1972.
|
[9] |
李福春, 朱金初, 金章东. 华南富锂氟含稀有金属花岗岩的成因分析[J]. 矿床地质, 2000, 19(4):376-385.
|
[9] |
Li F C, Zhu J C, Jin Z D. Genetic interpretation of Li-f-rich rare metal-bearing granites in South China[J]. Mineral Deposits, 2000, 19(4):376-385.
|
[10] |
薛水根. 地球化学异常的查证方法及效果[J]. 江苏地质, 2002, 26(1):13-18.
|
[10] |
Xue S G. Determination methods and effect for geochemical anomaly[J]. Jiangsu Geology, 2002, 26(1):13-18.
|
[1] |
TIAN Liao-Dong, LONG Deng-Hong, YANG Tao, LIU Hai, MA Min-Xiong, JIANG Hong-Ying. Extracting geological mineral information from regional geochemical exploration data: A case study of the Gaoqiao area in Huixian County, Gansu Province, China[J]. Geophysical and Geochemical Exploration, 2025, 49(4): 768-777. |
[2] |
SUN Yue, YANG Shao-Ping, ZHANG Zhen-Yu, YUAN Gui-Qin, WANG Zhi-Feng. Preliminary exploration into the revision of the Technical Symbols for Geochemical Exploration[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1425-1430. |
|
|
|
|