|
|
Definition of global apparent resistivity based on three components of the magnetic field for the interpretation of the ground-airborne frequency-domain electromagnetic data |
LUO Jiao1( ), GUO Wen-Bo1, LIU Chang-Sheng2( ), ZHANG Ji-Feng3, WANG Wei1,3, XU Yi1,3, ZHANG Xin-Xin1, CHEN Jing1 |
1. Xi'an Northwest Colored Geophysical and Geochemical Exploration Company Limited, Xi'an 710068, China 2. Changsha Aeronautical Vocational and Technical College, Changsha 410124, China 3. College of Geological Engineering and Geomatics, Chang'an University, xi'an 710054, China |
|
|
Abstract The ground-airborne frequency-domain electromagnetic (GAFDEM) method exhibits high efficiency and low cost compared to conventional ground electromagnetic methods. It is applicable to electromagnetic sounding in complex topographic and geomorphic settings, demonstrating promising application potential. Despite the development and preliminary application of GAFDEM-related instrumentation and equipment, the interpretation methods for GAFDEM data remain under-studied. By investigating the resistivity-varying patterns of three components of the magnetic field in a homogeneous half-space, this study proposed an iterative method based on Taylor series expansion to calculate the global apparent resistivity. Through the calculation of a typical stratigraphic model, this study analyzed the characteristics of global apparent resistivity under different components, frequency domains, flight altitudes, and offsets. The results demonstrate that the definition method of global apparent resistivity in this study, subjected to minimal impacts from parameters like receiver-transmitter distance and flight altitude, can effectively reflect the variations of formation resistivity. Therefore, this study provides a theoretical guide for the processing and interpretation of GAFDEM data.
|
Received: 08 May 2024
Published: 22 July 2025
|
|
|
|
|
|
Frequency domain ground-to-air electromagnetic method for horizontal couple sources
|
|
Magnetic field strength in uniform half-space, Hx response varying with model resistivity
|
|
Magnetic field strength in uniform half-space, Hy response varying with model resistivity
|
|
Magnetic field strength in uniform half-space, Hz response varying with model resistivity
|
|
Flow chart of global apparent resistivity algorithm by magnetic field intensity y-component dichotomy
|
|
Global apparent resistivity of magnetic components in a uniform half-space
|
|
Global apparent resistivity for offset 1 500 m and flight altitude 100 m
|
|
H model global apparent resistivity curves with frequency for each component of magnetic field
|
|
K model global apparent resistivity curves with frequency for each component of magnetic field
|
[1] |
殷长春, 朴化荣. 电磁测深法视电阻率定义问题的研究[J]. 物探与化探, 1991, 15(4):290-299.
|
[1] |
Yin C C, Piao H R. A study of the DfYINITION of apparentresistivity in electromagnetic sounding[J]. Geophysical and Geochemical Exploration, 1991, 15(4):290-299.
|
[2] |
方文藻, 李貅, 李予国, 等. 频率域电磁法中视电阻率全区定义[J]. 长安大学学报:地球科学版, 1992, 14(4):81-86.
|
[2] |
Fang W Z, Li X, Li Y G, et al. The whole-zone definition of apparent resistivity used in the frequency domain electromagnetic methods[J]. Journal of Chang’an University Earth Science Edition, 1992, 14(4):81-86.
|
[3] |
黄皓平, 朴化荣. 水平多层大地上垂直磁偶极频率测深的全波视电阻率[J]. 地球物理学报, 1992, 35(3):389-395.
|
[3] |
Huang H P, Piao H R. Full-wave apparent resistivity from vertical magnetic dipole frequency soundings on a layered earth[J]. Chinese Journal of Geophysics, 1992, 35(3):389-395.
|
[4] |
毛先进, 鲍光淑. 水平电偶源频率域电磁测深全区视电阻率的直接算法[J]. 中南工业大学学报, 1996(3):253-266.
|
[4] |
Mao X J, Bao G S. A direct algorithm for full-wave apparent resistivity from horizontal electric dipole frequency soundings[J]. Journal of Central South University of Technology:Natural Science, 1996(3):253-266.
|
[5] |
陈明生, 阎述, 陶冬琴. 电偶源频率电磁测深中的Ex分量[J]. 煤田地质与勘探, 1998, 26(6):60-66.
|
[5] |
Chen M S, Yan S, Tao D Q. Ex component in the frequency electromagnetic sounding of double source[J]. Coal Geology & Exploration, 1998, 26(6):60-66.
|
[6] |
汤井田, 周聪, 张林成. CSAMT电场y方向视电阻率的定义及研究[J]. 吉林大学学报:地球科学版, 2011, 41(2):552-558.
|
[6] |
Tang J T, Zhou C, Zhang L C. A new apparent resistivity of CSAMT defined by electric field y-direction[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(2):552-558.
|
[7] |
戚志鹏, 李貅, 朱宏伟, 等. 大定源装置下瞬变电磁法视电阻率定义[J]. 地球物理学进展, 2011, 26(4):1350-1358.
|
[7] |
Qi Z P, Li X, Zhu H W, et al. Definition of apparent resistivity for non-center vertical component of Large-loop TEM configuration[J]. Progress in Geophysics, 2011, 26(4):1350-1358.
|
[8] |
郝延松, 胡博, 于润桥, 等. 磁性源瞬变电磁法视电阻率计算方法[J]. 物探与化探, 2012, 36(6):1034-1039.
|
[8] |
Hao Y S, Hu B, Yu R Q, et al. The calculation of the apprarent resistivity for magnetic source tem[J]. Geophysical and Geochemical Exploration, 2012, 36(6):1034-1039.
|
[9] |
柳建新, 佟铁钢, 刘春明, 等. E-Eϕ广域视电阻率定义的改进方法及场特性识别[J]. 中国有色金属学报, 2013, 23(9):2359-2364.
|
[9] |
Liu J X, Tong T G, Liu C M, et al. Recognition of electromagnetic field asymptotic properties and improved definition of wide field apparent resistivity on E-Eϕ array[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9):2359-2364.
|
[10] |
王启, 王宏宇, 程党性. E-Eϕ、E-Ex广域视电阻率对比与应用[J]. 物探与化探, 2014, 38(1):120-124.
|
[10] |
Wang Q, Wang H Y, Cheng D X. A new apparent resistivity of wide field electromagnetic defined by E-Eϕ & E-Ex component[J]. Geophysical and Geochemical Exploration, 2014, 38(1):120-124.
|
[11] |
王宏宇, 程党性, 杨旭. 广域电磁法E-Eϕ视电阻率研究[J]. 物探化探计算技术, 2014, 36(1):9-15.
|
[11] |
Wang H Y, Cheng D X, Yang X. Study on apparent resistivity of wide field electromagnetic defined by Eϕ component[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(1):9-15.
|
[12] |
刘长胜, 朱文杰, 马金发, 等. 地空频率域电磁法探测范围与深度分析[J]. 中国矿业大学学报, 2020, 49(5):1006-1012.
|
[12] |
Liu C S, Zhu W J, Ma J F, et al. Analysis of detection range and depth of ground-airborne frequency domain electromagnetic method[J]. Journal of China University of Mining & Technology, 2020, 49(5):1006-1012.
|
[13] |
罗维斌, 丁志军, 高曙德, 等. 测量磁场水平分量Hy的电性源广域电磁测深法[J]. 物探与化探, 2021, 45(1):46-56.
|
[13] |
Luo W B, Ding Z J, Gao S D, et al. Wide field electromagnetic sounding using y-component magnetic field with horizontal current dipole source[J]. Geophysical and Geochemical Exploration, 2021, 45(1):46-56.
|
[14] |
张继锋, 刘寄仁, 冯兵, 等. 多源频率域地空系统三维电磁响应分析[J]. 地球物理学报, 2021, 64(4):1419-1434.
|
[14] |
Zhang J F, Liu J R, Feng B, et al. Three-dimensional response of the 3D grounded multiple-source airborne EM system in the frequency domain[J]. Chinese Journal of Geophysics, 2021, 64(4):1419-1434.
|
[15] |
秦西社, 马劼, 郭文波, 等. 基于反函数原理的可控源大地电磁法全场域视电阻率定义[J]. 物探与化探, 2022, 46(2):373-382.
|
[15] |
Qin X S, Ma J, Guo W B, et al. Definition of full-field apparent resistivity of controlled source magnetotellurics based on inverse function principle[J]. Geophysical and Geochemical Exploration, 2022, 46(2):373-382.
|
[16] |
钱威州, 陈辉, 邓居智, 等. 垂直磁偶源频率域电磁测深法一维正演及响应特征[J]. 科学技术与工程, 2023, 23(12):4958-4964.
|
[16] |
Qian W Z, Chen H, Deng J Z, et al. One-dimensional modeling and response characteristics of vertical magnetic dipoles frequency-domain electromagnetic sounding method[J]. Science Technology and Engineering, 2023, 23(12):4958-4964.
|
[17] |
McNeill J D, Edwards R N, Levy G M. Approximate calculations of the transient electromagnetic response from buried conductors in a conductive half-space[J]. Geophysics, 1984, 49(7):918-924.
|
[18] |
McNeill J D. Why should I measure three components in a time-domain electromagnetic survey[R]. Mississauga: Geonica Limited,1992.
|
[19] |
刘金涛, 顾汉明, 胡祥云. 瞬变电磁法三分量解释剖析[J]. 人民长江, 2008, 39(11):114-116.
|
[19] |
Liu J T, Gu H M, Hu X Y. Analysis of three component interpretation of transient electromagnetic method[J]. Yangtze River, 2008, 39(11):114-116.
|
[20] |
席振铢, 刘剑, 龙霞, 等. 瞬变电磁法三分量测量方法研究[J]. 中南大学学报:自然科学版, 2010, 41(1):272-276.
|
[20] |
Xi Z Z, Liu J, Long X, et al. Three-component measurement in transient electromagnetic method[J]. Journal of Central South University:Science and Technology Edition, 2010, 41(1):272-276.
|
[21] |
戚志鹏, 李貅, 郭文波, 等. 瞬变电磁水平分量视电阻率定义[J]. 煤炭学报, 2011, 36(S1):88-93.
|
[21] |
Qi Z P, Li X, Guo W B, et al. Definition of apparent resistivity for horizontal-component of transient electromagnetic method[J]. Journal of China Coal Society, 2011, 36(S1):88-93.
|
[22] |
Sun H F, Li X, Li S C, et al. Multi-component and multi-array TEM detection in Karst tunnels[J]. Journal of Geophysics and Engineering, 2012, 9(4):359-373.
|
[23] |
Meng Q X, Hu X Y, Pan H P, et al. Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method[J]. Applied Geophysics, 2017, 14(1):175-186.
|
[24] |
张莹莹, 李貅, 姚伟华, 等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报, 2015, 58(8):2745-2758.
|
[24] |
Zhang Y Y, Li X, Yao W H, et al. Multi-component full field apparent resistivity definition of multi-source ground-airborne transient electromagnetic method with galvanic sources[J]. Chinese Journal of Geophysics, 2015, 58(8):2745-2758.
|
[25] |
张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1):102-113.
|
[25] |
Zhang Y Y. An analysis of full-component response of multi-source semi-airborne TEM method[J]. Geophysical and Geochemical Exploration, 2021, 45(1):102-113.
|
[26] |
张继锋, 孙乃泉, 刘最亮, 等. 电磁法在煤矿水害隐患探测方面的综述[J]. 煤田地质与勘探, 2023, 51(2):301-316.
|
[26] |
Zhang J F, Sun N Q, Liu Z L, et al. Electromagnetic methods in the detection of water hazards in coal mines:A review[J]. Coal Geology & Exploration, 2023, 51(2):301-316.
|
[27] |
张继锋, 刘寄仁, 冯兵. 一种多源频率域地空电磁探测采集系统及方法:CN111796328A[P].2020-10-20.
|
[27] |
Zhang J F, Liu J R, Feng B. A multi-source frequency domain ground-to-air electromagnetic detection acquisition system and method:CN111796328A[P].2020-10-20.
|
[28] |
徐晶, 强建科, 张钱江, 等. 半航空频率域电磁测深2.5D正演模拟中几个关键问题[J]. 地球物理学进展, 2024, 39(1):431-446.
|
[28] |
Xu J, Qiang J K, Zhang Q J, et al. Several key issues in 2.5D forward modeling of semi-airborne electromagnetic sounding in the frequency domain[J]. Progress in Geophysics, 2024, 39(1):431-446.
|
[29] |
陈清礼. 瞬变电磁法全区视电阻率的二分搜索算法[J]. 石油天然气学报, 2009, 31(2):45-49,12,11.
|
[29] |
Chen Q L. Searching algorithm for full time apparent resistivity from TEM electromotive force data[J]. Journal of Oil and Gas Technology, 2009, 31(2):45-49,12,11.
|
|
|
|