|
|
|
| Comparison of component detection capabilities using the short-offset transient electromagnetic method and an application example |
PAN Yuan1,2,3( ), LUO Cong1,2,3( ), XU Lin1,2,3, CHEN Pin-Xiong1,2,3, FU Hong-Yi1,3 |
1. Guizhou Coalfield Geophysical Prospecting Co.,Ltd.,Guiyang 550014,China 2. No.174 Geological Team,Guizhou Coal Field Geology Bureau,Guiyang 550081,China 3. Academician Workstation for Precision Development of Rich Mineral Resources and Environmental Protection of Guizhou Province,Guiyang 550000,China |
|
|
|
|
Abstract This study aims to demonstrate the effects of the electric-source short-offset transient electromagnetic method(SOTEM) for water hazard prevention and control in coal mines under complex topographical conditions.To this end,the detection capabilities of the Hx and Ex components were simulated and analyzed using the SOTEM method,along with field tests in a coal mine in northern Guizhou.During the tests,four profiles were arranged and the SOTEMSoft software was used for inversion, with the inversion results verified by drilling.The results show that during measurement along the equatorial direction,the Hz component exhibited a high capability to detect low-resistivity anomalies.In contrast,the Ex component exhibited a comparable capability in detecting both low-resistivity(along the equatorial direction) and high-resistivity anomalies(along the axial direction).The SOTEM technique can accurately locate the most severe water hazard areas in coal mines under complex topographical conditions.The feasibility and accuracy of the SOTEM method for water hazard prevention and control were validated through the application in coal mines in northern Guizhou.
|
|
Received: 03 June 2025
Published: 23 October 2025
|
|
|
|
|
|
|
Schematic of SOTEM equatorial device
|
|
Schematic of SOTEM axial device
|
|
Schematic of forward simulation
|
|
Plane distribution of vertical magnetic field at different times
|
|
Plane distribution of horizontal electric field at different times
|
|
Schematic diagram of various geoelectric models
|
|
Comparison of inversion results of equatorial measurements in a uniform half space
|
|
Comparison of equatorial measurement inversion results for H-shaped strata
|
|
Comparison of inversion results of K-type formation axial measurement
|
| 系 | 统 | 组 | 段 | 厚度/m | 岩性描述 | 电阻率/Ω·m | | 第四系 | | | | 0~34.30 | 黏土、砂土、泥砾、砂砾等 | 50~600 | | 三叠系 | 下统 | 夜郎组 | T1y3 | >200 | 粉砂岩为主 | 100~300 | | T1y2 | | 粉砂质泥岩、灰岩、薄层石灰岩 | 500~1200 | | T1y1 | | 粉砂岩、泥岩、粉砂质泥岩夹泥灰岩 | 100~300 | | 二叠系 | 乐平统 | 长兴组 | P3c | | 石灰岩为主 | 300~1200 | | 龙潭组 | P3l | | 粉砂岩、泥岩、细砂岩、灰岩、炭质泥岩及煤层 | 30~150 | | 阳新统 | 茅口组 | P2m | >100 | 石灰岩 | 800~7000 |
|
Summary of strata in the mining area
|
|
Engineering layout diagram
|
|
SOTEM equatorial test line resistivity cross-section
|
|
SOTEM axial test line resistivity cross-section
|
| [1] |
何继善, 薛国强. 短偏移距电磁探测技术概述[J]. 地球物理学报, 2018, 61(1):1-8.
|
| [1] |
He J S, Xue G Q. Review of the key techniques on short-offset electromagnetic detection[J]. Chinese Journal of Geophysics, 2018, 61(1):1-8.
|
| [2] |
薛国强, 陈卫营, 武欣, 等. 电性源短偏移距瞬变电磁研究进展[J]. 中国矿业大学学报, 2020, 49(2):217-228.
|
| [2] |
Xue G Q, Chen W Y, Wu X, et al. Review on research of short-offset transient electromagnetic method[J]. Journal of China University of Mining &Technology, 2020, 49(2):217-228.
|
| [3] |
薛国强, 陈卫营, 周楠楠, 等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报, 2013, 56(1):255-261.
|
| [3] |
Xue G Q, Chen W Y, Zhou N N, et al. Short-offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics, 2013, 56(1):255-261.
|
| [4] |
薛国强, 闫述, 陈卫营. 接地源短偏移瞬变电磁法研究展望[J]. 地球物理学进展, 2014, 29(1):177-181.
|
| [4] |
Xue G Q, Yan S, Chen W Y. Research prospect to grounded-wire TEM with short-offset[J]. Progress in Geophysics, 2014, 29(1):177-181.
|
| [5] |
陈卫营, 薛国强. 电性源短偏移距瞬变电磁法数据处理软件系统SOTEMsoft[J]. 地球科学与环境学报, 2021, 43(6):1050-1056.
|
| [5] |
Chen W Y, Xue G Q. Data processing software SOTEMsoft for electric source short-offset transient electromagnetic method[J]. Journal of Earth Sciences and Environment, 2021, 43(6):1050-1056.
|
| [6] |
陈卫营, 薛国强, 李海. SOTEM野外数据采集中的关键参数分析[J]. 物探与化探, 2024, 48(5):1169-1175.
|
| [6] |
Chen W Y, Xue G Q, Li H. Analysis of critical parameters in the field acquisition of short-offset transient electromagnetic data[J]. Geophysical and Geochemical Exploration, 2024, 48(5):1169-1175.
|
| [7] |
牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
|
| [7] |
Niu Z L. Principle of time domain electromagnetic method[M]. Changsha: Central South University Press, 2007.
|
| [8] |
Zhou N N, Xue G Q, Hou D Y, et al. An investigation of the effect of source geometry on grounded-wire TEM surveying with horizontal electric field[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1):143-151.
|
| [9] |
黄仕茂, 杨光, 王军成, 等. SOTEM在厚覆盖煤矿采空区探测中的应用实例[J]. 物探与化探, 2024, 48(5):1208-1214.
|
| [9] |
Huang S M, Yang G, Wang J C, et al. Application cases of the short-offset transient electromagnetic method in detecting goafs with thick overburden in a coal mine[J]. Geophysical and Geochemical Exploration, 2024, 48(5):1208-1214.
|
| [10] |
薛国强, 闫述, 陈卫营. 电性源瞬变电磁短偏移探测方法[J]. 中国有色金属学报, 2013, 23(9):2365-2370.
|
| [10] |
Xue G Q, Yan S, Chen W Y. Exploration technique due to grounded wire source with short-offset[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9):2365-2370.
|
| [11] |
陈卫营, 薛国强, 崔江伟, 等. SOTEM响应特性分析与最佳观测区域研究[J]. 地球物理学报, 2016, 59(2):739-748.
|
| [11] |
Chen W Y, Xue G Q, Cui J W, et al. Study on the response and optimal observation area for SOTEM[J]. Chinese Journal of Geophysics, 2016, 59(2):739-748.
|
| [12] |
陈稳, 薛国强, 陈卫营, 等. SOTEM多分量激电响应特性分析[J]. 地球物理学进展, 2019, 34(5):1859-1865.
|
| [12] |
Chen W, Xue G Q, Chen W Y, et al. Multi-component response of SOTEM with IP effect[J]. Progress in Geophysics, 2019, 34(5):1859-1865.
|
| [13] |
陈卫营, 薛国强. SOTEM一维等效源反演方法[J]. 物探与化探, 2016, 40(2):411-416.
|
| [13] |
Chen W Y, Xue G Q. 1-D image source inversion of SOTEM data[J]. Geophysical and Geochemical Exploration, 2016, 40(2):411-416.
|
| [14] |
卢云飞, 薛国强, 邱卫忠, 等. SOTEM 研究及其在煤田采空区中的应用[J]. 物探与化探, 2017, 41(2):354-359.
|
| [14] |
Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017, 41(2):354-359.
|
| [15] |
侯东洋, 薛国强, 陈卫营. SOTEM与CSAMT对低阻层的分辨能力比较[J]. 物探与化探, 2016, 40(1):185-189.
|
| [15] |
Hou D Y, Xue G Q, Chen W Y. Distinguishing capability of SOTEM and CSAMT for low resistivity layer[J]. Geophysical and Geochemical Exploration, 2016, 40(1):185-189.
|
| [16] |
陈大磊, 陈卫营, 郭朋, 等. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5):1226-1232.
|
| [16] |
Chen D L, Chen W Y, Guo P, et al. The application of SOTEM method to populated areas:A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1226-1232.
|
| [17] |
薛俊杰, 陈卫营, 王贺元. 电性源短偏移瞬变电磁探测深度分析与应用[J]. 物探与化探, 2017, 41(2):381-384.
|
| [17] |
Xue J J, Chen W Y, Wang H Y. Analysis and application of the detection depth of electrical source short-offset TEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2):381-384.
|
| [18] |
陈卫营, 薛国强. 电性源瞬变电磁对薄层的探测能力[J]. 物探与化探, 2015, 39(4):775-779.
|
| [18] |
Chen W Y, Xue G Q. Detection capability of grounded electric source TEM for thin layer[J]. Geophysical and Geochemical Exploration, 2015, 39(4):775-779.
|
|
|
|