|
|
High-power-ultrahigh-power electromagnetic exploration technology: Progress and outlook |
WANG Jun-Lu1( ), CHEN Hui1( ), LUO Xian-Zhong1, ZHANG Xiao-Fei1, LIN Pin-Rong2, YU Bing1, PANG Zhen-Shan1,3 |
1. Development and Research Center, China Geological Survey, Beijing 100037, China 2. Institute of Geophysics and Geochemistry Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China 3. Mineral Resource Exploration Technology Guidance Center, Ministry of Natural Resources, Beijing 100037, China |
|
|
Abstract Over the past century, electromagnetic exploration technology has evolved from direct current resistivity and induced polarization methods to a comprehensive geophysical system. Yet, in China's new mineral exploration phase, challenges like deep-mining needs, cultural noise, and weak 3D interpretation limit traditional methods. High-power-ultrahigh-power electromagnetic technology, by boosting transmission current, combats these issues. It enhances detection depth, enables 3D exploration, and drives technological and application innovation. This paper reviews the development of high-power-ultrahigh-power electromagnetic instruments and current research. It emphasizes that technologies like true 3D full-waveform IP collection and inversion, tensor CSAMT collection and inversion, and multi-parameter joint inversion of time-and frequency-domain EM methods can strengthen deep-target detection. Future research should tackle anisotropic 3D inversion, full-domain inversion with a field source, and extracting polarization and magnetization rates under complex constraints. These advances will propel electromagnetic methods toward greater depth, precision, and intelligence, supporting China's renewed mineral exploration efforts.
|
Received: 26 May 2025
Published: 07 August 2025
|
|
|
|
|
[1] |
底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6):2128-2138.
|
[1] |
Di Q Y, Zhu R X, Xue G Q, et al. New development of the electromagnetic(EM)methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6):2128-2138.
|
[2] |
林品荣, 郭鹏, 石福升, 等. 大深度多功能电磁探测技术研究[J]. 地球学报, 2010, 31(2):149-154.
|
[2] |
Lin P R, Guo P, Shi F S, et al. A study of the techniques for large-depth and multi-functional electromagnetic survey[J]. Acta Geoscientica Sinica, 2010, 31(2):149-154.
|
[3] |
汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.
|
[3] |
Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics, 2015, 58(8):2681-2705.
|
[4] |
Xue G Q. The Development of near-source electromagnetic methods in China[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1):115-124.
|
[5] |
何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报, 2019, 29(9):1809-1816.
|
[5] |
He J S. Theory and technology of wide field electromagnetic method[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9):1809-1816.
|
[6] |
何展翔, 陈忠昌, 任文静, 等. 时频电磁(TFEM)勘探技术:数据采集系统[J]. 石油地球物理勘探, 2020, 55(5):1131-1138,937.
|
[6] |
He Z X, Chen Z C, Ren W J, et al. Time-frequency electromagnetic(TFEM) method:Data acquisition system and its application[J]. Oil Geophysical Prospecting, 2020, 55(5):1131-1138,937.
|
[7] |
何展翔, 胡祖志, 王志刚, 等. 时频电磁(TFEM)技术:数据联合约束反演[J]. 石油地球物理勘探, 2020, 55(4):898-905,705.
|
[7] |
He Z X, Hu Z Z, Wang Z G, et al. Time-frequency electromagnetic(TFEM) technique:Step-by-step constraint inversion based on artificial fish swarm algorithm[J]. Oil Geophysical Prospecting, 2020, 55(4):898-905,705.
|
[8] |
Lu J X,Zhuo, X J, Liu Y, et al. The extremely low frequency engineering project for underground exploration[J]. Engineering, 2022,10:13-20.
|
[9] |
滕吉文. 强化第二深度空间金属矿产资源探查,加速发展地球物理勘探新技术与仪器设备的研制及产业化[J]. 地球物理学进展, 2010, 25(3):729-748.
|
[9] |
Teng J W. Strengthening exploration of metallic minerals in the second depth space of the crust,accelerating development and industralization of new geophysical technology and instrumental equipment[J]. Progress in Geophysics, 2010, 25(3):729-748.
|
[10] |
滕吉文, 薛国强, 宋明春. 第二深度空间矿产资源探查理念与电磁法找矿实践[J]. 地球物理学报, 2022, 65(10):3975-3985.
|
[10] |
Teng J W, Xue G Q, Song M C. Theory on exploring mineral resources in the second deep space and practices with electromagnetic method[J]. Chinese Journal of Geophysics, 2022, 65(10):3975-3985.
|
[11] |
刘镜竹, 罗国平, 齐朝华. 频率域电磁测深中干扰的识别与压制[J]. 中国煤炭地质, 2024, 36(3):72-77.
|
[11] |
Liu J Z, Luo G P, Qi Z H. Identification and suppression for interference on frequecy-domain electromagnetic sounding[J]. Coal Geology of China, 2024, 36(3):72-77.
|
[12] |
林君. 电磁探测技术在工程与环境中的应用现状[J]. 物探与化探, 2000, 24(3):167-177.
|
[12] |
Lin J. Trend of electromagnetic instrumentation for engineering and environment[J]. Geophysical and Geochemical Exploration, 2000, 24(3):167-177.
|
[13] |
Rutley A, Oldenburg D W, Shekhtman R. 2D and 3D IP/resistivity inversion for the interpretation of Isa-style targets[J]. ASEG Extended Abstracts, 2001, 2001(1):1-4.
|
[14] |
何展翔. 电磁勘探技术的机遇与挑战及发展方向[J]. 物探化探计算技术, 2019, 41(4):433-447.
|
[14] |
He Z X. Opportunities,challenges and development directions of electromagnetic exploration today[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(4):433-447.
|
[15] |
殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学:地球科学, 2020, 50(3):432-435.
|
[15] |
Yin C C, Liu Y H, Xiong B. Status and prospect of 3D inversions in EM geophysic[J]. Scientia Sinica:Terrae, 2020, 50(3):432-435.
|
[16] |
严良俊, 胡文宝, 陈清礼, 等. 长偏移距瞬变电磁测深法在碳酸盐岩覆盖区落实局部构造的应用效果[J]. 地震地质, 2001, 23(2):271-276.
|
[16] |
Yan L J, Hu W B, Chen Q L, et al. Trial with lotem to investigate detailed geologial structure in the area covered with carbonatite[J]. Seismology and Geology, 2001, 23(2):271-276.
|
[17] |
何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.
|
[17] |
He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010, 41(3):1065-1072.
|
[18] |
汤井田, 周聪, 张林成. CSAMT电场y方向视电阻率的定义及研究[J]. 吉林大学学报:地球科学版, 2011, 41(2):552-558.
|
[18] |
Tang J T, Zhou C, Zhang L C. A new apparent resistivity of CSAMT defined by electric field y-direction[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(2):552-558.
|
[19] |
陈卫营, 薛国强. 广域电磁法中垂直磁场分量的分析与应用[J]. 物探与化探, 2015, 39(2):358-361.
|
[19] |
Chen W Y, Xue G Q. The analysis and application of the vertical magnetic component in wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2015, 39(2):358-361.
|
[20] |
周聪, 汤井田, 庞成, 等. 时空阵列混场源电磁法理论及模拟研究[J]. 地球物理学报, 2019, 62(10):3827-3842.
|
[20] |
Zhou C, Tang J T, Pang C, et al. A theory and simulation study on the space-time array hybrid source electromagnetic method[J]. Chinese Journal of Geophysics, 2019, 62(10):3827-3842.
|
[21] |
Wang J L, Lin P R, Wang M, et al. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. Applied Geophysics, 2017, 14(2):291-300.
|
[22] |
何展翔, 董卫斌, 赵国, 等. 时频电磁(TFEM)技术:数据处理[J]. 石油地球物理勘探, 2021, 56(6):1391-1399,1202-120.
|
[22] |
He Z X, Dong W G, Zhao G, et al. Time-frequency electromagnetic (TFEM) technology:Data processing[J]. Oil Geophysical Prospecting, 2021, 56(6):1391-1399,1202-120.
|
[23] |
Wang M, Wang J L, Lin P R, et al. Three-dimensional resistivity and chargeability tomography with expanding gradient and pole-dipole arrays in a polymetallic mine,China[J]. Remote Sensing, 2024, 16(1):186.
|
[24] |
石福升. 大功率多功能发射系统研究[J]. 地球物理学进展, 2009, 24(3):1109-1114.
|
[24] |
Shi F S. A study on high-power multi-function transmitting system[J]. Progress in Geophysics, 2009, 24(3):1109-1114.
|
[25] |
底青云, 雷达, 王中兴, 等. 多通道大功率电法勘探仪集成试验[J]. 地球物理学报, 2016, 59(12):4399-4407.
|
[25] |
Di Q Y, Lei D, Wang Z X, et al. An integrated test of the multi-channel transient electromagnetic system[J]. Chinese Journal of Geophysics, 2016, 59(12):4399-4407.
|
[26] |
赵翔, 钱文圣, 亓庆新. 大功率瞬变电磁发射机的仿真与研制[J]. 中国金属通报, 2021(6):186-188,191.
|
[26] |
Zhao X, Qian W S, Qi Q X. Simulation and development of high power transient electromagnetic transmitter[J]. China Metal Bulletin, 2021(6):186-188,191.
|
[27] |
Swanson J. Magnetic fields from transmission lines:comparison of calculations and measurements[J]. IEE Proceedings-Generation,Transmission and Distribution, 2002, 142(5) :481-486.
|
[28] |
张凯, 林年添, 聂西坤, 等. 用于深部采空区探测的可控源音频大地电磁法抗强干扰数据采集及处理策略[J]. 地球物理学进展, 2019, 34(5):2119-2127.
|
[28] |
Zhang K, Lin N T, Nie X K, et al. Strategies of anti-jamming data acquisition and processing for exploration of deep goaf based on controlled-source audiomagnetotellurics[J]. Progress in Geophysics, 2019, 34(5):2119-2127.
|
[29] |
Wang J L, Wang M, Liu W Q, et al. The full-field apparent resistivity of CSAMT defined by the magnetic field y-component and an application to a geological survey in the Xiong'an New Area,China[J]. Bulletin of Geophysics and Oceano graphy, 2021, 63(2):311-324.
|
[30] |
Wang J L, Lin P R, Wang M, et al. A multiple parameter extraction and electromagnetic coupling correction technique for time domain induced polarisation full waveform data[J]. Exploration Geophysics, 2019, 50(2):113-123.
|
[31] |
李帝铨. E-Ex和E-Eφ广域电磁法测量范围[J]. 石油地球物理勘探, 2017, 52(6):1315-1323,1124-1125.
|
[31] |
Li D Q. Measurement range of E-Ex and E-Eφ wide field elec-tromagnetic methods[J]. Oil Geophysical Prospecting, 2017, 52(6):1315-1323,1124-1125.
|
[32] |
Huang H P, Fraser D C. Magnetic permeability and electrical resistivity mapping with a multifrequency airborne EM system[J]. Exploration Geophysics, 1998, 29(1-2):249-253.
|
[33] |
冯兵, 王珺璐, 王玉, 等. 利用CSAMT电磁场响应提取激电效应的方法初探[J]. 地球物理学进展, 2013, 28(4):2116-2122.
|
[33] |
Feng B, Wang J L, Wang Y, et al. The preliminary exploration to extract the IP effect which using CSAMT electromagnetic field response method[J]. Progress in Geophysics, 2013, 28(4):2116-2122.
|
[34] |
Beard L P, Nyquist J E. Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability[J]. Geophysics, 1998, 63(5):1556-1564.
|
[35] |
Sasaki Y, Kim J H, Cho S J. Multidimensional inversion of loop-loop frequency-domain EM data for resistivity and magnetic susceptibility[J]. Geophysics, 2010, 75(6):F213-F223.
|
[36] |
何展翔, 吴迪, 吴磊. 我国大功率可控源电磁仪器的现状与发展方向[J]. 物探装备, 2012, 22(6):351-355.
|
[36] |
He Z X, Wu D, Wu L. The current situation and developing trend of domestic large power contro source electromagnetic instrument[J]. Equipment for Geophysical Prospecting, 2012, 22(6):351-355.
|
[37] |
底青云, 方广有, 张一鸣. 地面电磁探测系统(SEP)研究[J]. 地球物理学报, 2013, 56(11):3629-3639.
|
[37] |
Di Q Y, Fang G Y, Zhang Y M. Research of the surface electromagnetic prospecting(SEP)system[J]. Chinese Journal of Geophysics, 2013, 56(11):3629-3639.
|
[38] |
Lei D, Wu X P, Di Q Y, et al. Modeling and analysis of CSAMT field source effect and its characteristics[J]. Journal of Geophysics and Engineering, 2016, 13(1):49.
|
[39] |
郑采君, 刘昕卓, 林品荣, 等. 分布式电磁法仪器系统设计及实现[J]. 地球物理学报, 2019, 62(10):3772-3784.
|
[39] |
Zheng C J, Liu X Z, Lin P R, et al. Design and realization of the distributed electromagnetic instrument system[J]. Chinese Journal of Geophysics, 2019, 62(10):3772-3784.
|
[40] |
卓贤军, 陆建勋, 赵国泽, 等. 极低频探地(WEM)工程[J]. 中国工程科学, 2011, 13(9):42-50.
|
[40] |
Zhuo X J, Lu J X, Zhao G Z, et al. The extremely low frequency engineering project using WEM for underground exploration[J]. Engineering Sciences, 2011, 13(9):42-50.
|
[41] |
Seigel H, Nabighian M, Parasnis D S, et al. The early history of the induced polarization method[J]. The Leading Edge, 2007, 26(3):312-321.
|
[42] |
李建华, 林品荣, 郭鹏. 磁激电方法技术试验研究[J]. 地震地质, 2010, 32(3):492-499.
|
[42] |
Li J H, Lin P R, Guo P. A trial study of magnetic induced polarization[J]. Seismology and Geology, 2010, 32(3):492-499.
|
[43] |
Loke M H, Barker R D. Practical techniques for 3D resistivity surveys and data inversion1[J]. Geophysical Prospecting, 1996, 44(3):499-523.
|
[44] |
Santarato G, Ranieri G, Occhi M, et al. Three-dimensional electrical resistivity tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils[J]. Engineering Geology, 2011, 119(1-2):18-30.
|
[45] |
White R, Collins S, Loke M. Resistivity and IP arrays,optimised for data collection and inversion[J]. Exploration Geophysics, 2003, 34(4):229-232.
|
[46] |
Power C, Tsourlos P, Ramasamy M, et al. Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia,Canada[J]. Journal of Applied Geophysics, 2018,150:40-51.
|
[47] |
Neyamadpour A, Taib S, Abdullah W A T W. An application of three-dimensional electrical resistivity imaging for the detection of an underground waste-water system[J]. Studia Geophysica et Geodaetica, 2009, 53(3):389-402.
|
[48] |
Webb D, Rowston P, McNeill G. A Comparison of 2D and 3D IP from Copper Hill NSW[C]// In Proceedings of the ASEG 16th Geophysical Conference and Exhibition, 2000.
|
[49] |
Sun J J, Li Y G, Nabighian M. Lithology differentiation based on inversion of full waveform induced polarization data from Newmont Distributed IP Data Acquisition System (NEWDAS)[C]// In Proceedings of the SEG International Exposition and Annual Meeting, 2010.
|
[50] |
Paine J, Copeland A. Reduction of noise in induced polarization data using full time-series data[J]. Exploration Geophysics, 2000, 34(4):225-228.
|
[51] |
刘卫强, 吕庆田, 林品荣, 等. 多周期全波形激电抗干扰数据处理方法及在大规模探测中的应用分析[J]. 地球物理学报, 2019, 62(10):3934-3949.
|
[51] |
Liu W Q, Lu Q T, Lin P R, et al. Anti-interference processing of multi-period full-waveform induced polarization data and its application to large-scale exploration[J]. Chinese Journal of Geophysics, 2019, 62(10):3934-3949.
|
[52] |
Lei D, Di Q Y, Wu J J, et al. Anti-interference test for the new SEP instrument:CSAMT study at Dongguashan copper mine,China[J]. Journal of Environmental and Engineering Geophysics, 2017, 22(4):339-352.
|
[53] |
黄高元, 张国鸿. CSAMT法张量与标量测量在已知铁矿区上的对比试验[J]. 物探与化探, 2014, 38(6):1207-1211.
|
[53] |
Huang G Y, Zhang G H. The comparative test between tensor measurement and scalar measurement of the CSAMT method in two known iron ore districts[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1207-1211.
|
[54] |
张振宇, 王刚, 胡祥云, 等. 张量CSAMT方法及对比实验[J]. 石油地球物理勘探, 2017, 52(4):869-874,630.
|
[54] |
Zhang Z Y, Wang G, Hu X Y, et al. Tensor CSAMT technical research and experiments[J]. Oil Geophysical Prospecting, 2017, 52(4):869-874,630.
|
[55] |
雷达, 张国鸿, 黄高元, 等. 张量可控源音频大地电磁法的应用实例[J]. 工程地球物理学报, 2014, 11(3):286-294.
|
[55] |
Lei D, Zhang G H, Huang G Y, et al. The application of tensor CSAMT method[J]. Chinese Journal of Engineering Geophysics, 2014, 11(3):286-294.
|
[56] |
王显祥, 底青云, 许诚. CSAMT的多偶极子源特征与张量测量[J]. 地球物理学报, 2014, 57(2):651-661.
|
[56] |
Wang X X, Di Q Y, Xu C. Characteristics of multiple sources and tensor measurement in CSAMT[J]. Chinese Journal of Geophysics, 2014, 57(2):651-661.
|
[57] |
Yu P L, Qu T, He R Z, et al. Application of tensor CSAMT with high-power orthogonal signal sources in Jiama porphyry copper deposit,South Tibet[J]. China Geology, 2023, 6(1):37-49.
|
[58] |
林昌洪, 谭捍东, 舒晴, 等. 可控源音频大地电磁三维共轭梯度反演研究[J]. 地球物理学报, 2012, 55(11):3829-3838.
|
[58] |
Lin C H, Tan H D, Shu Q, et al. Three-dimensional conjugate gradient inversion of CSAMT data[J]. Chinese Journal of Geophysics, 2012, 55(11):3829-3838.
|
[59] |
翁爱华, 刘云鹤, 贾定宇, 等. 地面可控源频率测深三维非线性共轭梯度反演[J]. 地球物理学报, 2012, 55(10):3506-3515.
|
[59] |
Weng A H, Liu Y H, Jia D Y, et al. Three-dimensional controlled source electromagnetic inversion using non-linear conjugate gradients[J]. Chinese Journal of Geophysics, 2012, 55(10):3506-3515.
|
[60] |
王涛, 王堃鹏, 谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. Applied Geophysics, 2017, 14(4):590-605,6.
|
[60] |
Wang T, Wang H P, Tan H D. Research on tensor CSAMT forward modeling and inversion in three-dimensional principal axis anisotropic media[J]. Applied Geophysics, 2017, 14(4):590-605,6.
|
[61] |
何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5):985-990.
|
[61] |
He J S. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5):985-990.
|
[62] |
王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5):1059-1065.
|
[62] |
Wang Y B, Yin W B, Zhang L. A preliminary exploration of the wide field electromagnetic method in aerogeophysical prospecting[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1059-1065.
|
[63] |
陈小斌, 赵国泽. 关于人工源极低频电磁波发射源的讨论——均匀空间交流点电流源的解[J]. 地球物理学报, 2009, 52(8):2158-2164.
|
[63] |
Chen X B, Zhao G Z. Study on the transmitting mechanism of CSELF waves:Response of the alternating current point source in the uniform space[J]. Chinese Journal of Geophysics, 2009, 52(8):2158-2164.
|
[64] |
底青云, 王妙月, 王若, 等. 长偶极大功率可控源电磁波响应特征研究[J]. 地球物理学报, 2008, 51(6):1917-1928.
|
[64] |
Di Q Y, Wang M Y, Wang R, et al. Study of the long bipole and large power electromagnetic field[J]. Chinese Journal of Geophysics, 2008, 51(6):1917-1928.
|
[65] |
Wang R, Wang M Y, Di Q Y, et al. 2D numerical study on the effect of conductor between the transmitter and survey area in CSEM exploration[J]. Applied Geophysics, 2009, 6(4):311-318.
|
[66] |
林君, 张扬, 张思远, 等. 强电磁干扰下磁共振地下水探测噪声压制方法研究进展[J]. 吉林大学学报:地球科学版, 2016, 46(4):1221-1230.
|
[66] |
Lin J, Zhang Y, Zhang S Y, et al. Progress of magnetic resonance sounding for groundwater investigation under high-level electromagnetic interference[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(4):1221-1230.
|
[67] |
柳建新, 佟铁钢, 刘春明, 等. E-Eφ广域视电阻率定义的改进方法及场特性识别[J]. 中国有色金属学报, 2013, 23(9):2359-2364.
|
[67] |
Liu J X, Tong T G, Liu C M, et al. Recognition of electromagnetic field asymptotic properties and improved definition of wide field apparent resistivity on E-Eφ array[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9):2359-2364.
|
[68] |
雷达, 底青云, 杨良勇, 等. 极低频电磁法在超深层油气探测中的应用——以川中油田为例[C]// 2019年中国地球科学联合学术年会, 2019.
|
[68] |
Lei D, Di Q Y, Yang L Y, et al. Application of extremely low frequency electromagnetic method in Ultra-deep oil and gas exploration:A case study of central sichuan oilfield[C]// 2019 Chinese Geoscience Union (CGU) Annual Meeting, 2019.
|
|
|
|