|
|
Application of comprehensive geophysical prospecting to groundwater exploration in Ritu County of the Ali area |
CHEN Yong-Ling( ), JIANG Shou-Jin( ), XIE Dan, WANG Jia, HE Zhi-Xiong, LIU Cheng |
Civil-Military Integration Center of China Geological Survey, Chengdu 610059, China |
|
|
Abstract Surface water resources are scarce in Ritu County of the Ali area due to the absence of large rivers. The strata in the area are primarily composed of Jurassic and Cretaceous sedimentary rocks, exhibiting significantly varying spatial water abundance, thus posing challenges in water exploration through drilling. Based on hydrogeological survey data, this study summarized the occurrence patterns of pore water in Quaternary unconsolidated rocks and fissure water in fault structures and the electrical characteristics of aquifers in the area. It explored the structural fissure water with high water abundance in the area using the high-density resistivity method and the audio magnetotelluric method. Based on the geophysical exploration results, it delineated favorable aquifers. Furthermore, it verified the exploration accuracy through drilling, obtaining high-yield water wells, and ensuring the supply of drinking water. Therefore, the combination of multiple geophysical exploration methods is effective in groundwater resource surveys, improving the exploration accuracy of groundwater resources and providing effective technical support for well deployment.
|
Received: 22 December 2022
Published: 27 June 2024
|
|
|
|
|
|
Geological sketchmap of the study area
|
|
Work layout map
|
|
High-density resistivity inversion diagram
|
|
Audio Magnetotelluric Inversion diagram
|
地下水类型 | ρs/(Ω·m) | 电性特征 曲线形态 | 围岩 | 含水层 | 断裂构造 裂隙水 | 1800~11000 | 200~600 | 呈陡降低阻“漏斗状”或“条带状”异常电性特征曲线 | 第四系松散 岩类孔隙水 | 600~1050 | 170~400 | 呈“层”状低阻电性特征曲线 |
|
Electrical characteristics of different groundwater type
|
[8] |
冼诗盛. 高密度电法在复杂地质构造条件下的找水效果[J]. 地质与资源, 2015, 24(2):132-136.
|
[8] |
Xian S S. Application of high-density electrical method in groundwater exploration under complex geologic structural conditions[J]. Geology and Resources, 2015, 24(2):132-136.
|
[9] |
焦彦杰, 吴文贤, 杨剑, 等. 云南岩溶石山区物探找水方法与实例分析[J]. 中国地质, 2011, 38(3):770-778.
|
[9] |
Jiao Y J, Wu W X, Yang J, et al. Geophysical water exploration methods in stone Mountain Karst areas and case analysis[J]. Geo-logy in China, 2011, 38(3):770-778.
|
[10] |
曹新文, 马秀敏, 彭华, 等. 山东蓬莱玄武岩覆盖区高密度电法找水效果分析[J]. 地球物理学进展, 2018, 33(6):2528-2534.
|
[10] |
Cao X W, Ma X M, Peng H, et al. Effect analysis of high-density resistvity method to groundwater exploration in basalt area Penglai Shangdong Province[J]. Progress in Geophysics, 2018, 33(6):2528-2534.
|
[11] |
郑智杰, 曾洁, 赵伟, 等. 高密度电法在岩溶区找水中的应用研究[J]. 地球物理学进展, 2019, 34(3):1262-1267.
|
[11] |
Zheng Z J, Zeng J, Zhao W, et al. Application research of high density resistivity method in water exploring in Karst area[J]. Progress in Geophysics, 2019, 34(3):1262-1267.
|
[12] |
张彪, 刘良志, 倪进鑫, 等. 综合物探方法在花岗岩严重缺水地区找水勘查中的应用[J]. 工程地球物理学报, 2015, 12(4):501-507.
|
[12] |
Zhang B, Liu L Z, Ni J X, et al. Application of comprehensive geophysical prospecting method in water exploration in granite areas with serious water shortage[J]. Chinese Journal of Engineering Geophysics, 2015, 12(4):501-507.
|
[13] |
曹建文, 赵良杰, 王喆, 等. 乌蒙山区革香河流域干旱成因及打井找水模式[J]. 中国岩溶, 2021, 40(3):439-448.
|
[13] |
Cao J W, Zhao L J, Wang Z, et al. Causes of drought and models of drilling wells for water exploration in the Gexiang River Basin of the Wumeng Mountains[J]. Carsologica Sinica, 2021, 40(3):439-448.
|
[1] |
康小兵, 许模, 谯勉江, 等. 物探方法在西藏阿里地区地下水资源调查中的应用[J]. 工程勘察, 2007, 35(9):70-73.
|
[1] |
Kang X B, Xu M, Qiao M J, et al. Application of geophysical methods in groundwater resource investigation of Ali area,Tibet[J]. Geotechnical Investigation & Surveying, 2007, 35(9):70-73.
|
[2] |
李富, 邓国仕, 袁建飞, 等. 确定探采结合井位的综合物探方法技术研究——以乌蒙山区为例[J]. 地球物理学进展, 2018, 33(3):1218-1225.
|
[2] |
Li F, Deng G S, Yuan J F, et al. Combination of exploration and mining technology research method of geophysical exploration wells:In Wumeng Mountain area as an example[J]. Progress in Geophysics, 2018, 33(3):1218-1225.
|
[3] |
邬健强, 赵茹玥, 甘伏平, 等. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1):93-98.
|
[3] |
Wu J Q, Zhao R Y, Gan F P, et al. The application of electrical prospecting method to groundwater exploration in Karst mountainous areas:A case study of Changtang Village,Huaihua area,Hunan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(1):93-98.
|
[4] |
杨剑, 王永华, 焦彦杰, 等. EH-4电磁系统在西南抗旱救灾找水中的应用[J]. 物探与化探, 2011, 35(6):754-757.
|
[4] |
Yang J, Wang Y H, Jiao Y J, et al. The application of EH-4 electromagnetism to water resource exploration and drought resistance in southwest China[J]. Geophysical and Geochemical Exploration, 2011, 35(6):754-757.
|
[5] |
王文杰, 郝一, 薄海军, 等. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4):869-881.
|
[5] |
Wang W J, Hao Y, Bo H J, et al. A case analysis of multielectrode resistivity method for determining a well location in groundwater prospecting in the ore concentration area of Guyang County,Baotou City[J]. Geophysical and Geochemical Exploration, 2021, 45(4):869-881.
|
[6] |
齐信, 黎清华, 张再天, 等. 海南省琼中县花岗岩地区含水层电性特征及地下水赋存规律[J]. 地质通报, 2021, 40(6):1001-1009.
|
[6] |
Qi X, Li Q H, Zhang Z T, et al. Electrical characteristics and storage rules of groundwater in granite area of Qiongzhong County,Hainan Province[J]. Geological Bulletin of China, 2021, 40(6):1001-1009.
|
[7] |
陈松, 刘磊, 刘怀庆, 等. 北部湾咸淡水分界面划分中的电法应用分析[J]. 地球物理学进展, 2019, 34(4):1592-1599.
|
[7] |
Chen S, Liu L, Liu H Q, et al. Analysis on the application of electrical method in dividing the interface between salt and fresh water in Beibu Gulf[J]. Progress in Geophysics, 2019, 34(4):1592-1599.
|
[1] |
XIA Shi-Bin, LIAO Guo-Zhong, DENG Guo-Shi, YANG Jian, LI Fu. Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the karst area in southwestern China[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 651-659. |
[2] |
PANG Yong-Hao, SHEN Zhao-Ang, CHANG Zhi-Xi, LI Guang-Chang, CHEN Mei, XIE Zhi-Wei, WANG Wei. An observation device based on asymmetric design for high-density resistivity imaging[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 786-793. |
|
|
|
|