|
|
Application of airborne time-domain electromagnetic method in investigation of permafrost |
YU Xue-Zhong1,2( ), XIE Ru-Kuan1, SHAN Xi-Peng1,2, HE Yi-Yuan1, SUN Si-Yuan1, LI Shi-Jun1 |
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083 2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Nature and Resources, Beijing 100083 |
|
|
Abstract Investigating the spatial distribution of permafrost is critical for cryosphere research. At present, China's investigation concerning the spatial distribution of permafrost generally employs the detection method of ground geophysical exploration combined with logs to obtain local point or line data. Alternatively, different remote sensing models can be used to simulate and estimate the thickness of regional permafrost. This study inferred the spatial distribution of permafrost based on airborne time-domain electromagnetic (TDAEM) data and resistivity calculation results. The comparative analysis of the inference results and the known drilling data reveals an average error of 18.5% between the permafrost thickness inferred from the inversion results of TDAEM data and the result determined by borehole temperature measurements. This suggests that the TDAEM method exhibits high effectiveness and accuracy in permafrost thickness investigation. With technical advantages like high efficiency and minor topographic influence, the TDAEM method can be applied to the large-scale, rapid, and quantitative permafrost investigation in the Qinghai-Tibet Plateau and the Greater Khingan Range in northeast China. Therefore, this study provides a new and effective technical solution for a comprehensive investigation of the spatial distribution of permafrost and its influence on ecological environment changes.
|
Received: 05 June 2023
Published: 16 April 2024
|
|
|
|
|
18] ">
|
Permafrost and thaw zone around the study area[18]
|
|
Sketch map of airborne time-domain electromagnetic method
|
土壤/岩 性类型 | 采样数 量/件 | 电阻率/(Ω·m) | 采样深 度/m | 范围 | 平均值 | 非冻结土壤 | 24 | 48~163 | 94 | <1 | 冻结土壤 | 12 | 228~564 | 306 | <1 |
|
Measured resistivity of soil in the study area
|
|
Profile of L1140 survey line resistivity-depth profile(a) and interpretation result (b)
|
钻孔 | 对比项目 | 钻孔结果 | 反演推断结果 | 对比误差/% | ZK9-5 | 岩性及厚度 | 0~73 m:以中粒砂岩为主,夹粉砂岩、细砂岩 | 0~70 m:异常高阻体,视电阻率1 000~2 000 Ω·m;为富冰冻土引起 | 4 | 73~149 m:以细砂岩、粉砂岩为主,夹泥岩、砂质泥岩 | 70~135 m:高阻体,视电阻率600~1 000 Ω·m;为细砂岩、粉砂岩引起 | 10.4 | 149~240 m:以中粒砂岩为主,夹细粒砂岩、粉砂岩 | 135~230 m:低阻体,视电阻率50~200 Ω·m;明显低阻层对应含水较多中粒砂岩层 | 4 | 冻土层厚度 | 119 m | 135 m | 13.4 | ZK16-3 | 岩性及厚度 | 0~112 m:以中粒砂岩为主,夹细粒砂岩、粉砂岩 | 0~130 m:异常高阻体,视电阻率1000~1 500 Ω·m;为富冰冻土引起 | 16 | 112~177 m:以细粒砂岩为主,夹粉砂岩 | 130~160 m:高阻体,视电阻率700~1 000 Ω·m;高阻体为细砂岩、粉砂岩引起 | 10 | 冻土层厚度 | 104 m | 136 m | 23.5 |
|
The comparison between the interpretation result and borehole data
|
|
Three-dimensional resistivity structure of the study area
|
|
Three-dimensional spatial distribution of permafrost and ice-rich permafrost in the study area
|
[1] |
周幼吾. 中国冻土[M]. 北京: 科学出版社, 2000:40-62.
|
[1] |
Zhou Y W. Geocryology in China[M]. Beijing: Science Press, 2000:40-62.
|
[2] |
郭利娜. 冻土理论研究进展[J]. 水利水电技术, 2019, 50(3):145-154.
|
[2] |
Guo L N. Research progress of frozen soil theory[J]. Water Resources and Hydropower Engineering, 2019, 50(3):145-154.
|
[3] |
Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere1[J]. Polar Geography, 1999, 23(2):132-154.
|
[4] |
王根绪, 李元首, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学 D辑:地球科学, 2006, 36(8):743-754.
|
[4] |
Wang G X, Li Y S, Wu Q B, et al. Relationship between frozen soil and vegetation in permafrost region of Qinghai-Tibet Plateau and its influence on alpine ecosystem[J]. Science China Ser D:Earth Sciences, 2006, 36(8):743-754.
|
[5] |
吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3):250-255.
|
[5] |
Wu Q B, Shen Y P, Shi B. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3):250-255.
|
[6] |
Woo M K, Lewkowicz A G, Rouse W R. Response of the Canadian permafrost environment to climatic change[J]. Physical Geography, 1992, 13(4):287-317.
|
[7] |
Buteau S, Fortier R, Delisle G, et al. Numerical simulation of the impacts of climate warming on a permafrost mound[J]. Permafrost and Periglacial Processes, 2004, 15(1):41-57.
|
[8] |
祝杰, 李平, 刘应冬. 高寒冻土条件下CSAMT在地热勘探中的试验研究[J]. 地矿测绘, 2020, 3(1):58-59.
|
[8] |
Zhu J, Li P, Liu Y D. Experimental study of CSAMT in geothermal exploration under alpine frozen soil condition[J]. Geological and Mineral Surveying and mapping, 2020, 3(1):58-59.
|
[9] |
王武, 赵林, 刘广岳, 等. 瞬变电磁法(TEM)在多年冻土区的应用研究[J]. 冰川冻土, 2011, 33(1):156-163.
|
[9] |
Wang W, Zhao L, Liu G Y, et al. Geophysical mapping of permafrost using TEM[J]. Journal of Glaciology and Geocryology, 2011, 33(1):156-163.
|
[10] |
Efremov V N. Delineating the thawed and ice-rich zones based on apparent electromagnetic resistivity of frozen ground[J]. Journal of Engineering of Heilongjiang University, 2014(3):262-265.
|
[11] |
顾锺炜. 北美多年冻土调查中使用的几种电磁方法[J]. 冰川冻土, 1981, 3(4):88-98.
|
[11] |
Gu Z W. Several electromagnetic methods used in permafrost survey in North America[J]. Journal of Glaciology and Geocryology, 1981, 3(4):88-98.
|
[12] |
Hoekstra P, Sellmann P V, Delaney A. Ground and airborne resistivity surveys of permafrost near Fairbanks,Alaska[J]. Geophysics, 1975, 40(4):641-656.
|
[13] |
Hauck C, Guglielmin M, Isaksen K, et al. Applicability of frequency-domain and time-domain electromagnetic methods for mountain permafrost studies[J]. Permafrost and Periglacial Processes, 2001, 12(1):39-52.
|
[14] |
Minsley B, Abraham J, Smith B, et al. Airborne electromagnetic imaging of discontinuous permafrost[J]. Geophysical Research Letters, 2012, 39(2):1-8.
|
[15] |
Pastick N J, Jorgenson M T, Wylie B K, et al. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data,Yukon flats ecoregion,central Alaska[J]. Permafrost and Periglacial Processes, 2013, 24(3):184-199.
|
[16] |
Foley N, Tulaczyk S, Auken E, et al. Mapping geothermal heat flux using permafrost thickness constrained by airborne electromagnetic surveys on the western coast of Ross Island,Antarctica[J]. Exploration Geophysics, 2020, 51(1):84-93.
|
[17] |
Key K, Siegfried M R. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics[J]. Journal of Glaciology, 2017, 63(241):755-771.
|
[18] |
李向全, 王振兴, 侯新伟, 等. 青海重要能源基地水文地质环境地质调查报告[R]. 中国地质科学院水文地质环境地质研究所, 2015:64-68.
|
[18] |
Li X Q, Wang Z X, Hou X W, et al. Hydrogeological environment geological survey report of Qinghai important energy base[R]. Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences, 2015:64-68.
|
[19] |
薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4):1195-1200.
|
[19] |
Xue G Q, Li X, Di Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4):1195-1200.
|
[20] |
薛国强, 李貅, 底青云. 瞬变电磁法正反演问题研究进展[J]. 地球物理学进展, 2008, 23(4):1165-1172.
|
[20] |
Xue G Q, Li X, Di Q Y. Research progress in TEM forward modeling and inversion calculation[J]. Progress in Geophysics, 2008, 23(4):1165-1172.
|
[21] |
苏朱刘, 胡文宝. 中心回线方式瞬变电磁测深虚拟全区视电阻率和一维反演方法[J]. 石油物探, 2002, 41(2):216-221.
|
[21] |
Su Z L, Hu W B. Pseudo-full-region apparent resistivity and its one-dimensional inversion for center-loop-line configuration TEM data[J]. Geophysical Prospecting for Petrole, 2002, 41(2):216-221.
|
[22] |
孙思源, 余学中, 谢汝宽, 等. 航空电磁技术在冻土调查中的探测能力分析[J]. 物探与化探, 2022, 46(1):104-113.
|
[22] |
Sun S Y, Yu X Z, Xie R K, et al. Capabilities of airborne electromagnetic methods to detect permafrost[J]. Geophysical and Geochemical Exploration, 2022, 46(1):104-113.
|
[23] |
王佟, 王庆伟. 我国陆域天然气水合物勘查技术理论与实践[J]. 煤炭科学技术, 2012, 40(10):27-29,60.
|
[23] |
Wang T, Wang Q W. Theory and practices on exploration technology of land gas hydrates in China[J]. Coal Science and Technology, 2012, 40(10):27-29,60.
|
[24] |
柳瑶. 冻土电阻率模型及其试验研究[D]. 哈尔滨: 东北林业大学, 2015.
|
[24] |
Liu Y. Esablishment and experimental study of frozen soil resistivity model[D]. Harbin:Northeast Forestry University, 2015.
|
[25] |
肖继涛, 柳瑶, 胡照广, 等. 三种典型冻土的电阻率特性对比分析[J]. 森林工程, 2015, 31(6):116-121.
|
[25] |
Xiao J T, Liu Y, Hu Z G, et al. Comparative analysis on resistivity characteristics of three typical permafrost[J]. Forest Engineering, 2015, 31(6):116-121.
|
[1] |
Ming-Zuan XU, Yan HUANG, Jian-Sheng LIU, Jian-Dong LIU, Sheng-Yue LIANG, Feng CHEN, Jun-Cheng WANG. The application of airborne time-domain electromagnetic method to the optimization and evaluation of copper and multi base-metals targets in New England Orogen, Australia[J]. Geophysical and Geochemical Exploration, 2019, 43(2): 298-307. |
[2] |
LI Jun-Feng, LI Wen-Jie, LIU Jun-Jie. A new type of modified wave airborne electromagnetic pulse transmitting system[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1186-1189,1199. |
|
|
|
|