|
|
Design and application of a high-energy airgun source rich in low-frequency components under the strong shielding layer in the South Yellow Sea |
HUANG Fu-Qiang1,2(), CHEN Jian-Wen1,3(), LI Bin1,2, ZHANG Yi-Biao1,2, YANG Jia-Jia1,3, LI Ke1,2 |
1. Function Laboratory of Marine Geo-Resource Evaluation and Exploration Technology,Qingdao Marine Science and Technology Center,Qingdao 266237,China 2. Shanghai Geophysical Branch,Sinopec Offshore Oilfield Services Company,Shanghai 201208,China 3. Qingdao Institute of Marine Geology,China Geological Survey,Qingdao 266237,China |
|
|
Abstract A strong shielding layer exists between Neogene and Meso-Paleozoic strata in the South Yellow Sea Basin,hindering the downward propagation of seismic wave energy.Consequently,reflected seismic waves in deep strata manifest low energy and poor wave group characteristics,severely constraining the oil and gas exploration in Meso-Paleozoic strata.To enhance the imaging quality of Meso-Paleozoic strata under the strong shielding layer,this study proposed a method for designing a high-energy airgun source rich in low-frequency components through extensive simulation analyses at the excitation end of the source.Finally,a 6050 in3 high-energy airgun source rich in low-frequency components was designed and applied to the streamer-based seismic data acquisition in the extremely shallow water area in the western Laoshan uplift.The seismic data acquired in the deep strata under the strong shielding layer demonstrate significantly improved quality,exhibiting a higher signal-to-noise ratio,more continuous seismic events,and clearer structural characteristics.
|
Received: 24 April 2024
Published: 21 October 2024
|
|
|
|
|
序号 | 施工 时间/年 | 采集目标区域 | 震源容 量/in3 | 气枪类型 | 枪/缆沉 放深度/m | 1 | 1999 | 勿南沙隆起 | 1368 | SLEEVE | 3/4 | 2 | 2000 | 青岛凹陷 | 2905 | G | 5/6 | 3 | 2000 | 区域油气资源调查 | 3000 | BOLT | 8/12 | 4 | 2001 | 区域油气资源调查 | 3000 | BOLT | 8/12 | 5 | 2002 | 区域地质调查 | 2400 | SLEEVE | 7/9 | 6 | 2003 | 区域油气资源调查 | 5080 | BOLT | 6/7 | 7 | 2005 | “南通幅”调查 | 2940 | SLEEVE | 6/9 | 8 | 2005 | 区域地质调查 | 5080 | BOLT | 8/10 | 9 | 2006 | 崂山隆起 | 2940 (单枪最 大容量 300,最 小40) | SLEEVE | 8/12 | 10 | 2007 | 崂山隆起 | 2940 | SLEEVE | 8/12 | 11 | 2008 | 崂山隆起 | 2940 | SLEEVE | 8/12 | 12 | 2009 | 崂山隆起 | 3580 | SLEEVE | 8/12 | 13 | 2009 | 崂山隆起 | 6180 | G | 7/25 | 14 | 2010 | 崂山隆起 | 6420 (单枪最 大容量 380,最 小40) | SLEEVE+BOLT | 10/14 | 15 | 2010 | 崂山隆起 | 6316 | BOLT | 10/16 | 16 | 2011 | 崂山隆起 | 7340 | SLEEVE | (6/9)/15 | 17 | 2012 | 极浅水区 | 5460 | SLEEVE | OBC | 18 | 2012 | 盐城东区块滩海区 | 3900 | | OBC | 19 | 2012 | 海安东区块滩海区 | 2070 | BOLT | OBC | 20 | 2013 | 崂山隆起中部 | 5040 | SLEEVE | 7/10 | 21 | 2014 | 崂山隆起中部 | 5040 | SLEEVE | 7/10 | 22 | 2015 | 崂山隆起中南部 | 6390 | GII | 10/16 | 23 | 2016 | 崂山隆起中南部 | 6390 (单枪最 大容量 380,最 小45) | GII | 10/16 | 24 | 2018 | 崂山隆起中南部 | 5110 | GII | 10/14 | 25 | 2018 | 南部凹陷 | 4350 | GII | 6/7 |
|
Source information used in the South Yellow Sea seismic survey project
|
|
Spectrum curves of seismic source wavelet with different sinking depth
|
|
Low frequency signal curves of single gun wavelet for four airgun types
|
|
Wavelet energy relationship curves of four types of airguns
|
|
Wavelet energy relationship curves of the same total capacity and different number of single guns
|
总容量/in3 | 主峰值/(bar·m) | 峰—峰值/(bar·m) | 90 | 90(单枪) | 2.67 | 5.51 | 2×45(线性排布,3 m间隔) | 3.89 | 8.15 | 2×45(相干,相干间距1 m) | 3.56 | 7.43 | 150 | 150(单枪) | 3.07 | 6.22 | 2×75(线性排布,3 m间隔) | 4.90 | 10.10 | 2×75(相干,相干间距1 m) | 4.46 | 9.15 | 210 | 210(单枪) | 3.33 | 6.68 | 2×105(线性排布,3 m间隔) | 5.44 | 11.10 | 2×105(相干,相干间距1 m) | 4.92 | 9.98 | 300 | 300(单枪) | 3.77 | 7.48 | 2×150(线性排布,3 m间隔) | 5.99 | 12.10 | 2×150(相干,相干间距1 m) | 5.30 | 10.60 | 450 | 450(单枪) | 4.75 | 9.29 | 2×225(线性排布,3 m间隔) | 6.57 | 13.10 | 2×225(相干,相干间距1 m) | 5.77 | 11.40 | 500 | 500(单枪) | 5.05 | 9.82 | 2×250(线性排布,3 m间隔) | 6.64 | 13.20 | 2×250(相干,相干间距1 m) | 5.72 | 11.30 | 760 | 760(单枪) | 6.40 | 12.30 | 2×380(线性排布,3 m间隔) | 8.41 | 16.50 | 2×380(相干,相干间距1 m) | 6.66 | 12.90 |
|
Wavelet energy statistics of cluster guns with different capacities
|
|
Wavelet energy comparison curves of cluster guns with different capacities
|
|
Layout diagram of the 6 050 in3 source
|
震源容 量/in3 | 沉放深 度/m | 主峰值/ (bar·m) | 峰—峰值/ (bar·m) | 初泡 比 | 主频 /Hz | 频宽(-6dB) /Hz | 6050 | 6 | 114.2 | 236.7 | 33.0 | 60.0 | 9~105 | 6050 | 7 | 117.2 | 236.5 | 29.4 | 53.0 | 6~92 | 6050 | 8 | 111.1 | 226.9 | 25.9 | 48.5 | 6~83 | 6050 | 9 | 109.5 | 226.5 | 23.0 | 43.5 | 6~75 | 6050 | 10 | 113.2 | 229.5 | 21.3 | 39.0 | 5~67 | 6050 | 11 | 112.9 | 223.1 | 18.5 | 36.0 | 5~62 | 6050 | 12 | 109.7 | 215.1 | 16.5 | 33.0 | 5~57 |
|
The far-field wavelet parameters of 6 050 in3 at different depths (6~12 m)
|
|
The far-field seismic wavelet of 6 050 in3 source in 7 m depth
|
|
The far-field seismic spectrum of 6 050 in3 source in 7 m depth
|
| 2009年二维拖 缆采集方案 | 2022年二维拖 缆采集方案 | 气枪类型 | SLEEVE | GII | 震源容量/in3 | 3580 | 6050 | 震源深度/m | 8 | 7 | 电缆深度/m | 9 | 10 | 工作压力/psi | 2000 | 2000 | 炮间距/m | 50 | 37.5 | 道间距/m | 12.5 | 12.5 | 电缆长度/m | 6000 | 8100 | 覆盖次数 | 60 | 108 | 最小偏移距/m | 145 | 170 | 采样间隔/ms | 2 | 2 | 记录长度/ms | 8024 | 10240 |
|
Main parameters of seismic acquisition in the western extremely shallow water area of Laoshan Uplift in 2022
|
|
Raw shot seismic record
|
|
The spectrum of raw shot seismic record
|
|
The spectrum comparison between 2009 seismic raw data and 2022 new seismic data
|
|
Comparison of PSTM under the same fold(60 times) between 2009 seismic raw data and 2022 new seismic data
|
|
Comparison of PSTM
|
[1] |
张敏强, 漆滨汶, 高顺莉, 等. 南黄海中古生界勘探进展及油气潜力[J]. 海洋地质前沿, 2016, 32(3):7-15.
|
[1] |
Zhang M Q, Qi B W, Gao S L, et al. New exploration progress and hydrocarbon potential of the meso-Paleozoic systems in the South Yellow Sea[J]. Marine Geology Frontiers, 2016, 32(3):7-15.
|
[2] |
陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23.
|
[2] |
Chen J W, Lei B H, Liang J, et al. New progress of petroleum resources survey in South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2018, 38(3):1-23.
|
[3] |
陈建文, 张异彪, 陈华, 等. 南黄海盆地海相中—古生界地震探测技术攻关历程及效果[J]. 海洋地质前沿, 2021, 37(4):1-17.
|
[3] |
Chen J W, Zhang Y B, Chen H, et al. Research experiences and application of seismic exploration technology to the Mesozoic-Paleozoic marine strata in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2021, 37(4):1-17.
|
[4] |
陈建文, 张异彪, 刘俊, 等. 南黄海“高富强” 地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17.
|
[4] |
Chen J W, Zhang Y B, Liu J, et al. The “hrs” seismic exploration technology and its application in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2016, 32(10):9-17.
|
[5] |
陈建文, 施剑, 张异彪, 等. 地震调查技术突破南黄海海相中—古生界成像技术瓶颈[J]. 地球学报, 2017, 38(6):847-858.
|
[5] |
Chen J W, Shi J, Zhang Y B, et al. The application of “HRS” seismic exploration technology to making breakthrough of the seismic imaging “bottleneck” of the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin[J]. Acta Geoscientica Sinica, 2017, 38(6):847-858.
|
[6] |
吴志强, 张训华, 赵维娜, 等. 南黄海海相油气勘探前景探讨与问题分析[J]. 吉林大学学报:地球科学版, 2019, 49(1):26-28.
|
[6] |
Wu Z Q, Zhang X H, Zhao W N, et al. Marine oil and gas exploration prospects,problem and strategies in South Yellow Sea[J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1):26-28.
|
[7] |
吴志强, 吴时国, 童思友, 等. 基于南黄海海相油气勘探的地震采集技术研究[J]. 地球物理学报, 2011, 54(4):1061-1070.
|
[7] |
Wu Z Q, Wu S G, Tong S Y, et al. A study on seismic acquisition basic on marine carbonate hydrocarbon exploration in the southern Yellow Sea[J]. Chinese Journal of Geophysics, 2011, 54(4):1061-1070.
|
[8] |
高顺莉, 张敏强, 陈华. 大震源长缆深沉放地震采集技术在南黄海中古生代盆地的应用[J]. 海洋地质与第四纪地质, 2014, 34(1):95-101.
|
[8] |
Gao S L, Zhang M Q, Chen H. A large-scale seismic source,deep Gun and cable sinking and long cable pength application in Mesozoic-Paleozoic Basin in the South Huanghai Sea[J]. Marine Geology & Quaternary Geology, 2014, 34(1):95-101.
|
[9] |
吴志强, 高江涛, 陈茂根, 等. 南黄海盆地地震试验数据处理分析方法与成果[J]. 海洋地质前沿, 2014, 30(7):51-59.
|
[9] |
Wu Z Q, Gao J T, Chen M G, et al. Processing method and results of seismic testing data in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2014, 30(7):51-59.
|
[10] |
刘俊, 吴淑玉, 施剑, 等. 南黄海崂山隆起地震采集方法[J]. 海洋地质前沿, 2016, 32(10):24-29.
|
[10] |
Liu J, Wu S Y, Shi J, et al. On seismic acquisition methods on the Laoshan uplift of the South Yellow Sea[J]. Marine Geology Frontiers, 2016, 32(10):24-29.
|
[11] |
张异彪, 李玉剑, 陈建文, 等. 南黄海崂山隆起地震采集参数设计[J]. 海洋地质与第四纪地质, 2018, 38(3):143-151.
|
[11] |
Zhang Y B, Li Y J, Chen J W, et al. Seismic acquisition design for Laoshan uplift of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(3):143-151.
|
[12] |
李玉剑, 张异彪, 刘璐晨, 等. 南黄海中—古生界地震勘探震源设计及其应用[J]. 海洋地质与第四纪地质, 2019, 39(2):200-212.
|
[12] |
Li Y J, Zhang Y B, Liu L C, et al. Seismic source specially designed for the Meso-Paleozoic strata and its application to South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2):200-212.
|
[13] |
杨宸, 刘怀山, 赵明鑫, 等. 宽频立体枪阵优化设计[J]. 海洋地质前沿, 2023, 39(10):85-92.
|
[13] |
Yang C, Liu H S, Zhao M X, et al. Optimization design of the broadband stereo gun array[J]. Marine Geology Frontiers, 2023, 39(10):85-92.
|
[14] |
唐松华, 李斌, 张异彪, 等. 立体阵列组合技术在南黄海盆地的应用[J]. 海洋地质前沿, 2013, 29(5):64-70.
|
[14] |
Tang S H, Li B, Zhang Y B, et al. Application of tridimensional delayed excitation air-Gun array in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2013, 29(5):64-70.
|
[15] |
熊忠, 高顺莉, 张敏强, 等. 上下源宽线地震采集技术在南黄海中部隆起的应用[J]. 石油地球物理勘探, 2016, 51(4):647-653,1.
|
[15] |
Xiong Z, Gao S L, Zhang M Q, et al. Wide line seismic acquisition with over/under sources in the central uplift of South Yellow Sea Basin[J]. Oil Geophysical Prospecting, 2016, 51(4):647-653,1.
|
[16] |
Landr M. Modelling of GI gun signatures[J]. Geophysical Prospecting, 1992,40:721-747
|
[17] |
Laws R, Landrø M, Amundsen L. An experimental comparison of three direct methods of marine source signature estimation[J]. Geophysical Prospecting, 1998, 46(4):353-389.
|
[18] |
Pica A. Nonlinear inversion of seismic reflection data in a laterally invariant medium[J]. Geophysics, 1990, 55(3):284.
|
[19] |
Ziolkowski A, Hanssen P, Gatliff R, et al. Use of low frequencies for sub-basalt imaging[J]. Geophysical Prospecting, 2003, 51(3):169-182.
|
[20] |
Li G F, Cao M Q, Chen H L, et al. Modeling air Gun signatures in marine seismic exploration considering multiple physical factors[J]. Applied Geophysics, 2010, 7(2):158-165.
|
[1] |
Wen-Qiang XU, Bing-Qiang YUAN, Bi-Liang LIU, Chang-Li YAO. Multiple gravity and magnetic potential field edge detection methods and their application to the boundary of fault structures in northern South Yellow Sea[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 962-974. |
[2] |
WANG Hui-yan, HU Shu-qi, TANG Li-ling, SHI Chang-yi. GEOCHEMICAL CHARACTERISTICS OF SURFACE SEDIMENTS FROM THE SEA AREAS OF PEARL RIVER ESTUARY AND SOUTH YELLOW SEA[J]. Geophysical and Geochemical Exploration, 2014, 38(1): 51-57. |
|
|
|
|