|
|
Fine-scale prospecting targets of skarn iron deposits in the Pandian gravity-magnetic anomaly zone of northwestern Shandong Province: Insights from deep prospecting using the wide-field electromagnetic method |
GUO Guo-Qiang1,2,3(), LI Ya-Dong4, WANG Yang1,2,3, YU Jia-Bin1,2,3, WANG Run-Sheng1,2,3, GAO Xiao-Feng1,2,3, ZHANG Da-Ming5, HU Dong-Ning1,2,3, FANG Lei1,2,3, GUO Wei-Fang1,2,3 |
1. Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China 2. Shandong Provincial Engineering Research Center for Geological Prospecting, Jinan 250013, China 3. Shandong Engineering Research Center of Underground Resources and Environment High Precision Detection,Jinan 250013,China 4. No1. Geological Team of Shandong Provincial Bureau of Geology and Mineral Resources,Jinan 250109,China 5. Geophysical Survey Team of Hebei Province Coal Geological Bureau,Xingtai 054000,China |
|
|
Abstract Significant aeromagnetic and gravity anomalies were found in the ultra-deep coverage zone of the Pandian area in the northwestern Shandong Province. Through systematic verification of gravity and magnetic anomalies, a breakthrough in prospecting for deep skarn iron deposits has been achieved through several boreholes around the Pandian gravity-magnetic anomaly zone. However, the gravity-magnetic anomaly zone spreads extensively and its characteristics cannot directly indicate the prospecting target, thus some boreholes failed to find ores or revealed poor ore-finding conditions. Hence, to accurately delineate the ore-forming location in the gravity-magnetic anomaly zone and achieve a further breakthrough in ore prospecting, this study conducted the wide-field electromagnetic (WFEM) sounding in the verified Pandian gravity-magnetic anomaly zone. Combining the drilling verification, this study delineated the deep ore-forming interval of skarn iron deposits in the deep coverage zone and the favorable structural plane for ore-forming, suggesting the deep fine-scale prospecting targets.
|
Received: 10 April 2023
Published: 16 April 2024
|
|
|
|
|
|
Geological structure diagram of the study area
|
岩层 | 样品块数 | 岩性 | 电阻率ρ/(Ω·m) | 一般值 | 平均值 | 第四系 | 63 | 砂质黏土 | 10~30 | 18 | 新近系 | 50 | 黏土 | 6~22 | 12 | 石炭—二叠系 | 36 | 砂岩、粉砂岩 | 55~1568 | 769 | 奥陶系 | 32 | 灰岩 | 198~3197 | 2031 | 侵入岩闪长岩 | 30 | 闪长岩 | 947~5842 | 2985 | 铁矿石 | 30 | 磁铁矿 | 5.5~27.2 | 14.7 |
|
Statistical of electrical and physical characteristics in the study area
|
|
Pandian gravity and magnetic anomaly a—residual gravity anomaly; b—aeromagnetic pole anomaly
|
|
Comprehensive inference map of wide-area electromagnetic sounding profile L1
|
|
Comprehensive inference map of wide-area electromagnetic sounding profile L2
|
|
Comprehensive inference map of wide-area electromagnetic sounding profile L3
|
|
Metallogenic model of skarn iron ore
|
[1] |
吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报, 2019, 62(10):3629-3664.
|
[1] |
Lyu Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal of Geophysics, 2019, 62(10):3629-3664.
|
[2] |
何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5):985-990.
|
[2] |
He J S. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5):985-990.
|
[3] |
何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.
|
[3] |
He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010, 41(3):1065-1072.
|
[4] |
曹令敏. 地球物理方法在金属矿深部找矿中的应用及展望[J]. 地球物理学进展, 2011, 26(2):701-708.
|
[4] |
Cao L M. The application and expectation of the geophysical methods to deep metal mine exploration[J]. Progress in Geophysics, 2011, 26(2):701-708.
|
[5] |
柳建新, 赵然, 郭振威. 电磁法在金属矿勘查中的研究进展[J]. 地球物理学进展, 2019, 34(1):151-160.
|
[5] |
Liu J X, Zhao R, Guo Z W. Research progress of electromagnetic methods in the exploration of metal deposits[J]. Progress in Geophysics, 2019, 34(1):151-160.
|
[6] |
李帝铨, 胡艳芳. 强干扰矿区中广域电磁法与CSAMT探测效果对比[J]. 物探与化探, 2015, 39(5):967-972.
|
[6] |
Li D Q, Hu Y F. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical and Geochemical Exploration, 2015, 39(5):967-972.
|
[7] |
刘志新, 薛国强, 张林波. 张量CSAMT有效观测区域模拟对比分析[J]. 地球物理学报, 2017, 60(8):3278-3287.
|
[7] |
Liu Z X, Xue G Q, Zhang L B. Comparison and analysis on effective observation area of tensor CSAMT by numerical simulation method[J]. Chinese Journal of Geophysics, 2017, 60(8):3278-3287.
|
[8] |
汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.
|
[8] |
Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics, 2015, 58(8):2681-2705.
|
[9] |
刘春明, 佟铁钢, 何继善. 多种电磁法在某金矿的野外勘探应用[J]. 中国有色金属学报, 2013, 23(9):2422-2429.
|
[9] |
Liu C M, Tong T G, He J S. Exploration of various electromagnetic method in some gold mine[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9):2422-2429.
|
[10] |
朱裕振, 许聪悦. 广域电磁法深部找矿实验效果[J]. 物探与化探, 2011, 35(6):743-746.
|
[10] |
Zhu Y Z, Xu C Y. The experimental application of wider field electromagnetic method to the prospectiang for deep ore deposits[J]. Geophysical and Geochemical Exploration, 2011, 35(6):743-746.
|
[11] |
田红军, 张光大, 刘光迪, 等. 黔北台隆区地热勘探中广域电磁法的应用效果[J]. 物探与化探, 2020, 44(5):1093-1097.
|
[11] |
Tian H J, Zhang G D, Liu G D, et al. The application effect of the wide field electromagnetic method in geothermal exploration of Tailong area,northern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1093-1097.
|
[12] |
王宏宇, 李帝铨, 柳建新, 等. 广域电磁法在鄂尔多斯盆地西南缘含油富集区探测中的应用[J]. 地球物理学进展, 2020, 35(3):1038-1047.
|
[12] |
Wang H Y, Li D Q, Liu J X, et al. Application of wide-field electromagnetic method in the detection of oil-rich enrichment areas in the southwestern margin of the Ordos Basin[J]. Progress in Geophysics, 2020, 35(3):1038-1047.
|
[13] |
王军成, 赵振国, 高士银, 等. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2):321-330.
|
[13] |
Wang J C, Zhao Z G, Gao S Y, et al. Application of a comprehensive geophysical exploration methods in the exploration of geothermal resources in Yueliangwan,Binhai County[J]. Geophysical and Geochemical Exploration, 2023, 47(2):321-330.
|
[14] |
刘春伟, 王重, 胡彩萍, 等. 综合物探方法在胶东岩浆岩缺水山区找水中的应用[J]. 物探与化探, 2023, 47(2):512-522.
|
[14] |
Liu C W, Wang C, Hu C P, et al. Application of a comprehensive geophysical exploration methods to water exploration in magmatic rock mountainous areas with water shortage in Jiaodong Peninsula[J]. Geophysical and Geochemical Exploration, 2023, 47(2):512-522.
|
[15] |
Wang J L, Lin P R, Wang M, et al. A multiple parameter extraction and electromagnetic coupling correction technique for time domain induced polarisation full waveform data[J]. Exploration Geophysics, 2019, 50:113-123.
|
[16] |
王润生, 郝兴中, 陈大磊, 等. 山东齐河—禹城地区矽卡岩型铁矿成矿地质体边界讨论及深部特征研究[J]. 地球物理学进展, 2022, 37(1):59-68.
|
[16] |
Wang R S, Hao X Z, Chen D L, et al. Discussion on the boundary of metallogenic geological body of skarn type iron deposits and study on its deep characteristics in Qihe-Yucheng area,Shandong Province[J]. Progress in Geophysics, 2022, 37(1):59-68.
|
[17] |
孟小红, 王俊, 刘国峰, 等. 闽西南大排多金属矿区地球物理响应特征与找矿启示[J]. 地球物理学报, 2021, 64(3):949-964.
|
[17] |
Meng X H, Wang J, Liu G F, et al. Geophysical response characteristics of the Dapai polymetallic mining area in Southwestern Fujian Province and its prospecting implications[J]. Chinese Journal of Geophysics, 2021, 64(3):949-964.
|
[18] |
汪青松, 张金会, 尤淼, 等. 电流磁场法在厚覆盖区探测陡倾斜金矿的试验效果[J]. 地球物理学进展, 2021, 36(1):281-289.
|
[18] |
Wang Q S, Zhang J H, You M, et al. Detecting steeply inclined gold deposits in thick-covered areas buy using current magnetic field method[J]. Progress in Geophysics, 2021, 36(1):281-289.
|
[19] |
张利明, 凌丹丹. 高精度磁测在多金属矿整装勘查区成矿规律研究中的应用[J]. 地球物理学进展, 2019, 34(3):1145-1152.
|
[19] |
Zhang L M, Ling D D. Application of high precision magnetic measurement in the study of metallogenic regularity of multi-metallic ore deposit exploration area[J]. Progress in Geophysics, 2019, 34(3):1145-1152.
|
[20] |
丁文祥, 袁峰, 李晓晖, 等. 基于重磁联合反演的宁芜盆地钟姑矿田深部地质结构解析及成矿预测[J]. 地质学报, 2018, 92(11):2301-2317.
|
[20] |
Ding W X, Yuan F, Li X H, et al. Deep geological structure analysis and metallogenic prediction of zhonggu ore field in the south section of Ningwu Basin based on gravity and magnetic joint inversion[J]. Acta Geologica Sinica, 2018, 92(11):2301-2317.
|
[21] |
王润生, 郝兴中, 刘洪波, 等. 鲁西齐河地区矽卡岩型铁矿重磁方法找矿规律研究[J]. 地球物理学进展, 2022, 37(2):664-677.
|
[21] |
Wang R S, Hao X Z, Liu H B, et al. Study on prospecting law of skarn type iron deposit by gravity and magnetic method in Qihe area of western Shandong[J]. Progress in Geophysics, 2022, 37(2):664-677.
|
|
|
|