|
|
Distribution and sources of n-alkanes in sediments in the Fangchenggang sea area |
PANG Guo-Tao1( ), YANG Yuan-Zhen1, XIE Lei1, LI Wei1, ZHANG Xiao-Lei1,2, YAN Xing-Guo1 |
1. Yantai Center of Coastal Zone Geological Survey, China Geological Survey, Yantai 264000, China 2. College of Marine Geosciences, Ocean University of China, Qingdao 266100, China |
|
|
Abstract n-alkanes, exhibiting stable chemical properties, are ubiquitous in nature. They are favorable indicators of the source of organic matter. Using the gas chromatography-mass spectrometry (GC/MS), this study detected n-alkanes in the surface sediments sampled from the Fangchenggang sea area in September 2021. It analyzed their content and distribution, as well as their source based on characteristic parameters. The results are as follows: ① The n-alkanes of the Fangchenggang sea area manifested a content range of (67.51~850.08)×10-9 (dw), averaging 476.69×10-9 (dw), with high values primarily distributed in the southern sea area of Qisha Peninsula; ② They were principally composed of extensive n-C14~n-C35 n-alkane homologues in a bimodal distribution. The former peak group displayed an even-carbon number advantage, while the latter showed an odd-carbon number advantage; ③ The terrestrial-marine alkane ratio (ΣT/ΣM), carbon predominance index (CPI), and terrestrial-marine alkane predominance ratio (TAR) all indicate a significant terrestrial influence on n-alkanes in the Fangchenggang sea area; ④ The average chain length (ACL), alkane index (AI), and Pmar-aq further suggest that n-alkanes were mainly from terrestrial herbs; ⑤ The T-ALK/C16 ratio implies that the Fangchenggang sea area experienced oil pollution; ⑥ The pristane/phytane ratio (Pr/Ph) reveals that n-alkanes in the sediments of the Fangchenggang sea area formed in an oxidizing environment.
|
Received: 28 February 2023
Published: 16 April 2024
|
|
|
|
|
|
Sampling location of Fangchenggang sea area
|
名称 | 检出限/ 10-9 | 名称 | 检出限/ 10-9 | 名称 | 检出限/ 10-9 | C14 | 1.2 | C20 | 0.3 | C28 | 0.4 | C15 | 1.0 | C21 | 0.5 | C29 | 0.5 | C16 | 0.8 | C22 | 0.6 | C30 | 0.5 | C17 | 0.3 | C23 | 0.6 | C31 | 0.6 | Pr | 0.2 | C24 | 0.5 | C32 | 0.5 | C18 | 0.5 | C25 | 0.5 | C33 | 0.5 | Ph | 0.6 | C26 | 0.4 | C34 | 1.0 | C19 | 0.6 | C27 | 0.5 | C35 | 1.5 |
|
Detection limit of n-alkanes
|
|
Distribution of n-alkanes in sediments of the study area
|
|
Histogram of n-alkane content with different chain length at typical stations
|
|
Spatial distribution of marine and terrestrial n-alkanes ∑C15-21 and ∑C25-35 contents in surface sediments
|
位置 | 碳数 | 总量/ 10-9 | 均值/ 10-9 | 参考文献 | 锦州湾 | n-C8~ n-C38 | 1900~4200 | 2600 | [2] | 东海近岸 | n-C14~n-C34 | 530~2200 | 1515 | [21] | 厦门海域 | n-C9~n-C36 | 1800~4270 | 2749 | [22] | 渤海及邻近海域 | n-C11~n-C36 | 900~5100 | 2250 | [23] | 防城港海域 | n-C14~n-C35 | 67.51~ 850.08 | 476.69 | 本研究 |
|
Comparison of n-alkane concentrations in surface sediments of offshore waters
|
分析项目 | T-ALK/10-9 | CPI1 | CPI2 | ∑T/∑M | ACL | TAR | T-ALK/C16 | AI | Pmar-aq | Pr/Ph | FC01 | 286.71 | 0.48 | 2.38 | 3.60 | 30.13 | 4.25 | 16.18 | 0.61 | 0.14 | 1.67 | FC03 | 197.34 | 0.51 | 2.27 | 2.06 | 30.03 | 2.43 | 10.16 | 0.57 | 0.15 | 1.41 | FC05 | 67.51 | 0.90 | 2.54 | 3.17 | 30.11 | 2.97 | 20.74 | 0.57 | 0.12 | 2.02 | FC07 | 544.79 | 0.37 | 2.49 | 2.94 | 30.16 | 4.45 | 12.96 | 0.58 | 0.13 | 1.57 | FC09 | 505.39 | 0.38 | 2.84 | 1.97 | 30.15 | 3.03 | 9.82 | 0.59 | 0.13 | 1.57 | FC11 | 338.78 | 0.43 | 1.70 | 6.16 | 29.67 | 8.95 | 22.98 | 0.51 | 0.10 | 2.99 | FC14 | 457.41 | 0.57 | 3.48 | 6.61 | 29.76 | 10.14 | 27.85 | 0.57 | 0.17 | 2.31 | FC16 | 474.88 | 0.43 | 2.00 | 2.23 | 29.85 | 3.22 | 11.97 | 0.54 | 0.13 | 1.58 | FC18 | 263.64 | 0.91 | 1.53 | 5.38 | 29.48 | 4.85 | 28.82 | 0.46 | 0.10 | 2.34 | FC20 | 393.22 | 0.64 | 2.26 | 2.34 | 29.12 | 2.45 | 14.03 | 0.54 | 0.32 | 2.95 | FC22 | 655.35 | 0.28 | 2.36 | 1.77 | 29.43 | 3.65 | 9.38 | 0.49 | 0.19 | 1.90 | FC24 | 295.59 | 0.98 | 1.34 | 10.66 | 29.16 | 9.48 | 58.37 | 0.42 | 0.10 | 1.67 | FC26 | 551.38 | 0.41 | 3.46 | 2.98 | 30.36 | 4.03 | 13.07 | 0.63 | 0.12 | 0.99 | FC28 | 747.27 | 0.33 | 2.78 | 1.76 | 30.32 | 2.97 | 11.21 | 0.61 | 0.15 | 1.37 | FC30 | 637.12 | 0.34 | 2.79 | 1.40 | 30.31 | 2.31 | 9.33 | 0.59 | 0.16 | 0.87 | FC32 | 598.35 | 0.36 | 2.99 | 1.35 | 30.16 | 2.31 | 8.29 | 0.58 | 0.16 | 1.43 | FC34 | 462.93 | 0.86 | 2.65 | 6.36 | 30.18 | 7.36 | 33.62 | 0.59 | 0.15 | 1.65 | FC36 | 743.53 | 0.47 | 2.34 | 2.64 | 30.04 | 3.74 | 13.01 | 0.57 | 0.12 | 1.78 | FC38 | 850.08 | 0.33 | 2.58 | 1.15 | 30.04 | 2.14 | 8.24 | 0.57 | 0.16 | 1.71 | FC40 | 499.43 | 0.39 | 2.41 | 1.27 | 30.03 | 1.86 | 7.51 | 0.57 | 0.18 | 1.36 | FC42 | 439.83 | 0.33 | 2.69 | 1.63 | 29.52 | 2.81 | 9.14 | 0.52 | 0.21 | 1.50 | 平均值 | 476.69 | 0.51 | 2.47 | 3.31 | 29.91 | 4.26 | 16.98 | 0.56 | 0.15 | 1.74 |
|
The geochemical proxies of n-alkanes alkanes in surface sediments of study areas
|
|
Spatial distribution of surface sediment ΣT/ΣM and TAR
|
[1] |
Akram B B A R, Mohammadi J, et al. Characterization and ecological risk of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in sediments of Shadegan international wetland,the Persian Gulf[J]. Marine Pollution Bulletin, 2017, 124(1): 155-170.
|
[2] |
李泽利, 马启敏, 程海鸥, 等. 锦州湾表层沉积物正构烷烃特征参数研究[J]. 环境科学, 2011, 32(11): 3300-3304.
|
[2] |
Li Z L, Ma Q M, Cheng H O, et al. Normal alkanes characteristic parameters of Jinzhou Bay surface sediments[J]. Environmental Science, 2011, 32(11): 3300-3304.
|
[3] |
Bush R T, Mcinerney F A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta, 2013, 117:161-179.
|
[4] |
朱纯, 潘建明, 卢冰, 等. 长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示[J]. 海洋学报, 2005, 27(4):59-67.
|
[4] |
Zhu C, Pan J M, Lu B, et al. Compositional feature of n-alkanes in modern sediment from the Changjiang Estuary and adjacent area and its implication to transport and distribution of organic carbon[J]. Acta Oceanologica Sinica, 2005, 27(4):59-67.
|
[5] |
Venturini N, Pita A L, Brugnoli E, et al. Benthic trophic status of sediments in a metropolitan area (Rio de la Plata estuary): Linkages with natural and human pressures[J]. Estuarine Coastal & Shelf Science, 2012, 112:139-152.
|
[6] |
Eglinton G, Hamilton R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780):1322-1335.
|
[7] |
Duan Y. Organic geochemistry of recent marine sediments from the Nansha Sea,China[J]. Organic Geochemistry, 2000, 31(2/3):159-167.
|
[8] |
Silliman J E, Schelske C L. Saturated hydrocarbons in the sediments of Lake Apopka,Florida[J]. Organic Geochemistry, 2003, 34(3):253-260.
|
[9] |
Wang Z, Liu W G. Carbon chain length distribution in n-alkyl lipids:A process for evaluating source inputs to Lake Qinghai[J]. Organic Ceochemistry, 2012, 50:36-43.
|
[10] |
赵美训, 张玉琢, 邢磊, 等. 南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义[J]. 中国海洋大学学报:自然科学版, 2011, 41(4): 90-96.
|
[10] |
Zhao M X, Zhang Y Z, Xing L, et al. The composition and distribution of n-alkanes in surface sediments from the South Yellow Sea and their potential as organic matter source indicators[J]. Periodical of Ocean University of China, 2011, 41(4):90-96.
|
[11] |
防城港市地方志编纂委员会办公室. 防城港年鉴2016[M]. 南宁: 广西人民出版社, 2018.
|
[11] |
Office of Fangchenggang Local Chronicles Compilation Committee. Fangchenggang yearbook 2016[M]. Nanning: Guangxi People's Publishing House, 2018.
|
[12] |
中国国家标准化管理委员会. GB 17378.3—2007海洋监测规范第3部分:样品采集、贮存与运输[S]. 北京: 中国标准出版社, 2007.
|
[12] |
The Standardization Administration of China. GB 17378.3—2007 The specification for marine monitoring.Part 3:Sample collection, storage and transportation[S]. Beijing: Chinese Standard Publishing house,2008.
|
[13] |
周争桥, 夏维. 防城港海域潮流特征分析[J]. 海洋湖沼通报, 2021, 43(4):62-67.
|
[13] |
Zhou Z Q, Xia W. An analysis of tidal current characteristics of Fangchenggang sea area[J]. Transactions of Oceanology and Limnology, 2021, 43(4):62-67.
|
[14] |
Lei X, Zhang R, Liu Y, et al. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr[J]. Quaternary Science Reviews, 2011, 30(19):2666-2675.
|
[15] |
Ternois Y, Kawamura K, Keigwin L, et al. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years[J]. Geochimica et Cosmochimica Acta, 2001, 65(5):791-802.
|
[16] |
阎琨, 庞国涛, 李伟. 广西茅尾海潮间带表层沉积物有机物特征及来源分析[J]. 海洋环境科学, 2022, 41(2):303-308.
|
[16] |
Yan K, Pang G T, Li W. Characteristics and sources of organic matter in surface sediments of the intertidal zone in Maowei sea,Guangxi[J]. Marine Environmental Science, 2022, 41(2):303-308.
|
[17] |
Mead R, Xu Y, Chong J, et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 2005, 36(3):363-370.
|
[18] |
Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8):745-749.
|
[19] |
Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton[J]. Marine Biology, 1971, 8(3):183-189.
|
[20] |
Eglinton G, Hamilton R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780):1322-1335.
|
[21] |
李凤, 徐刚, 贺行良, 等. 东海近岸表层沉积物中正构烷烃的组成、分布及来源分析[J]. 海洋环境科学, 2016, 35(3):398-403.
|
[21] |
Li F, Xu G, He X L, et al. Composition,distribution and source of N-alkanes in surface sediments from the coast of East China Sea[J]. Marine Environmental Science, 2016, 35(3):398-403.
|
[22] |
邝伟明, 陈文锋, 陈金民. 厦门海域正构烷烃组成特征及石油烃污染情况研究[J]. 海洋环境科学, 2017, 36(1):76-80.
|
[22] |
Kuang W M, Chen W F, Chen J M. The characteristic parameters of N-alkanes and petroleum pollution of Xiamen bay[J]. Marine Environmental Science, 2017, 36(1):76-80.
|
[23] |
李胜勇, 邓伟, 张大海, 等. 渤海及邻近海域表层沉积物中烃类物质的分布特征及其指示意义[J]. 海洋环境科学, 2017, 36(4):501-508.
|
[23] |
Li S Y, Deng W, Zhang D H, et al. Distribution and its indication significance of hydrocarbons in surface sediments from Bohai Sea and adjacent area[J]. Marine Environmental Science, 2017, 36(4):501-508.
|
[24] |
Xiao B, Han Y, Liu J. Evaluation of biohydrogen production from glucose and protein at neutral initial pH[J]. International Journal of Hydrogen Energy, 2010, 35(12):6152-6160.
|
[25] |
Li J Z, Zheng G C, He J G, et al. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor[J]. Biotechnology Advances, 2009, 27(5):573-577.
|
[26] |
Duan Y. Organic geochemistry of recent marine sediments from the Nansha Sea,China-Science direct[J]. Organic Geochemistry, 2000, 31(2/3):159-167.
|
[27] |
Guo W, He M, Yang Z, et al. Characteristics of petroleum hydrocarbons in surficial sediments from the Songhuajiang River (China):Spatial and temporal trends[J]. Environmental Monitoring & Assessment, 2011, 179(1-4):81-92.
|
[28] |
李从玲. 近代海洋沉积物(层)中姥鲛烷/植烷比值及其地球化学意义[J]. 海洋地质与第四纪地质, 1990, 10(4):77-88
|
[28] |
Li C L. Pristane/phytane ratio in recent marine sediment (sedimentary layer) and its geochemical significance[J]. Marine Geology & Quaternary Geology, 1990, 10(4):77-88.
|
[29] |
Ten H H L, De L J W, Rullkotter J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330(6149):641-643.
|
[30] |
韩喜彬, 赵军, 初凤友, 等. 南极半岛东北海域表层沉积有机质来源及其沉积环境[J]. 海洋学报, 2015, 37(8):26-38.
|
[30] |
Han X B, Zhao J, Chu F Y, et al. The source of organic matter and its sedimentary environment of the bottomsurface sediment in northeast waters to Antarctic Peninsulabased on the biomarker features[J]. Acta Oceanologica Sinica, 2015, 37(8):26-38.
|
|
|
|