|
|
Application of natural thermoluminescence measurement technique in natural gas hydrate exploration in permafrost areas |
WANG Hui-Yan1(), TANG Rui-Ling1(), BI Jing2 |
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China 2. Shandong GEO-Surveying & Mapping Institute, Jinan 250014, China |
|
|
Abstract Since natural gas hydrates (NGHs) in permafrost areas feature complex formation mechanisms and multiple sources, there is an urgent need to develop multiple techniques for micro-leakage information capture in order to increase the exploration success rate. This study applied the natural thermoluminescence measurement technique to NGH exploration in a permafrost area for the first time. Specifically, it tested the thermoluminescence intensity in soil samples from the Muli permafrost area of the Qilian Mountains using an RGD-6 thermoluminescent dosimeter. Then, it summarized the heating procedure for NGH exploration in the area, as well as size fractions for sampling. The results show that the soil samples from the Muli permafrost area demonstrated optimal size fractions for sampling ranging from -60~100 meshes, an optimal heating rate of 5 ℃/s, and an optimal heating range of 50~400 ℃. Based on the anomaly characteristics of the natural thermoluminescence intensity in soil samples, this study determined the anomaly boundary of NGHs on the surface of the permafrost area. It revealed that the natural thermoluminescence intensity displayed anomalies on the top, which correspond well to the hydrocarbon anomaly mode. The natural thermoluminescence measurements of soil, unaffected by microorganisms and boasting high sensitivity, can be popularized as a promising method for NGH explorations in permafrost areas.
|
Received: 30 January 2023
Published: 26 February 2024
|
|
|
|
|
|
Location of the study area (a) and sample point distribution (b) in Qilian Mountain
|
|
The changing curve of intensity of thermoluminescence with different particle size
|
|
The changing curve of intensity of thermoluminescence in different temperature intervals
|
|
The changing curve of intensity of thermoluminescence in different heating speed
|
指标 | 位置 | 最大值 | 最小值 | 平均值 | 异常衬值 | 异常面积/km2 | NAP | 酸解烃甲烷 | 全区 | 52.38 | 2.93 | 13.89 | | | | 酸解烃重烃 | 全区 | 237.60 | 12.56 | 35.91 | | | | 热释光 | 全区 | 974.25 | 3.89 | 141.63 | | | | 水合物上方 | 974.25 | 49.96 | 351.46 | 2.45 | 0.84 | 2.06 |
|
Values of soil geochemical indications of the study area
|
|
Contour map of thermoluminescence in the permafrost region of Qilian Mountain
|
|
Contour map of acid extracted methane in the permafrost region of Qilian Mountain
|
[1] |
Siegel F R, Hu D, Vaz J E, et al. Areal thermoluminescence radiometric survey of Shengping oil field using burie:Dosimeters[J]. Oil and Gas Journal, 1989, 3(1):53-57.
|
[2] |
Siegel F R, Chen R, Vaz J E, et al. The integrated radiation environment at well sites-An adjunct to petroleum exploration[J]. Oil and Gas Journal, 1997, 10(6):91-96.
|
[3] |
Wang Z, Qin D, Zhuang G, et al. Application of thermoluminescence dosimetry in the exploration for oil and gas-using chinese gr-200 lif (mg,cu,p) tld[J]. Radiation Protection Dosimetry, 1993, 47(1-4):323-326.
|
[4] |
Zheng G, Kang Y. Thermoluminescence dating of jinniushan archaeological site[J]. Acta Anthropologica Sinica, 1994, 13:357-359.
|
[5] |
王平, 熊盛青. 油气放射性勘查原理方法与应用[M]. 北京: 地质出版社, 1997:3-10.
|
[5] |
Wang P, Xiong S Q. Principles and application of radio active exploration for oil and gas[M]. Beijing: Geological Publishing House, 1997:3-10.
|
[6] |
Xie X J. Local and regional surface geochemical exploration for oil and gas[J]. Journal of Geochemical Exploration, 1992, 42:25-42.
|
[7] |
郑公望. 热释光及其在石油勘探中的应用[J]. 石油勘探与开发, 1993, 20(4):49-51.
|
[7] |
Zheng G W. Thermoluminescence and its application in petroleum exploration[J]. Petroleum Exploration and Development, 1993, 20(4):49-51.
|
[8] |
Mckeever S W S. 固体热释光[M]. 蔡干钢,吴方,王所亭,译. 北京: 原子能出版社,1993.
|
[8] |
Mckeever S W S. Solid thermoluminescence[M].Translated by Cai G G,Wu F,Wang S T. Beijing: The Atomic Energy Press,1993.
|
[9] |
张志攀, 祝有海, 苏新. 羌塘盆地沉积物热释光特征及潜在意义[J]. 现代地质, 2008, 22(3):452-456.
|
[9] |
Zhang Z P, Zhu Y H, Su X. Characteristics of thermoluminescence from sediments and its implications in the Qiangtang Basin,Qinghai-Tibet Plateau[J]. Geoscience, 2008, 22(3):452-456.
|
[10] |
张志攀. 羌塘盆地天然气水合物勘察的酸解烃、热释光特征初探[D]. 北京: 中国地质大学(北京), 2006.
|
[10] |
Zhang Z P. A primary discussion in the character of acidolytical hydrocarbon and thermoluminescence related with gas hydrate in Qiangtang Basin[D]. Beijing: China University of Geosciences(Beijing), 2006.
|
[11] |
张富贵, 王成文, 张舜尧, 等. 热释光:一种冻土区天然气水合物地球化学勘查新技术[J]. 现代地质, 2018, 32(5):1080-1088.
|
[11] |
Zhang F G, Wang C W, Zhang S Y, et al. Thermoluminescence:An new tool for natural gas hydrate exploration[J]. Geoscience, 2018, 32(5):1080-1088.
|
[12] |
王南萍, 王平, 程业勋. 第四纪沉积物天然热释光测量勘查深部油气藏的方法原理及应用[J]. 现代地质, 1996, 10(4):543-549.
|
[12] |
Wang N P, Wang P, Cheng Y X. Principle of quaternary sediment natural thermoluminescence survey for prospecting oil reservoir and its application[J]. Geoscience, 1996, 10(4):543- 549.
|
[13] |
王南萍, 王平, 侯胜利, 等. 第四纪沉积物天然热释光测量方法技术研究—山东草桥油田研究实例[J]. 地学前缘, 2003, 10(1):205-211.
|
[13] |
Wang N P, Wang P, Hou S L, et al. Measurement technique of natural themoluminescence of quaternary sediment and its application to prospecting of hydrocarbon reservoirs in Caoqiao oilfield,Shandong Province,East China[J]. Earth Science Frontiers, 2003, 10(1):205-211.
|
[14] |
郑公望, 朱忠礼, 任秀生, 等. 热释光在油气勘查中的应用研究与进展[J]. 自然科学进展, 2003, 13(9):897-900.
|
[14] |
Zheng G W, Zhu Z L, Ren X S, et al. The application research progress of thermoluminescence technique to the oil and gas exploration[J]. Progress in Natural Science, 2003, 13(9):897-900.
|
[15] |
Zhang F, Yang Z, Zhou Y, et al. Accumulation mechanism of natural gas hydrate in the Qilian Mountain permafrost,Qinghai,China[J]. Front.Energy Res., 2022, 10:1006421.
|
[16] |
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
|
[16] |
Zhou Y W, Guo D X, Qiu G Q, et al. Frozen ground of China[M]. Beijing: Science Press, 2000.
|
[17] |
祝有海, 刘亚玲, 张永勤. 祁连山多年冻土区天然气水合物的形成条件[J]. 地质通报, 2006, 25(1):58-63.
|
[17] |
Zhu Y H, Liu Y L, Zhang Y Q. Formation conditions of gas hydrates in permafrost of the Qilian Mountains,Northwest China[J]. Geological Bulletin of China, 2006, 25(1):58-63.
|
[18] |
王超群, 丁莹莹, 胡道功, 等. 祁连山冻土区DK-9孔温度监测及天然气水合物稳定带厚度[J]. 现代地质, 2017, 31(1):158-166.
|
[18] |
Wang C Q, Ding Y Y, Hu D G, et al. Temperature monitoring results for gas hydrate borehole DK-9 and thickness of gas hydrate stability zone in the Qilian Mountains permafrost[J]. Geoscience, 2017, 31(1):158-166.
|
[19] |
祝有海, 张永勤, 文怀军, 等. 祁连山冻土区天然气水合物科学钻探工程概况[J]. 地质通报, 2011, 30(12):1816-1822.
|
[19] |
Zhu Y H, Zhang Y Q, Wen H J, et al. An overview of the scientific drilling project of gas hydrate in Qilian Mountain Permafrost,northwestern China[J]. Geological Bulletin of China, 2011, 30(12):1816-1822.
|
[20] |
黄霞, 祝有海, 王平康, 等. 祁连山冻土区天然气水合物烃类气体组分的特征和成因[J]. 地质通报, 2011, 30(12):1851-1856.
|
[20] |
Huang X, Zhu Y H, Wang P K, et al. Hydrocarbon gas composition and origin of core gas from the gas hydrate reservoir in Qilian Mountain permafrost[J]. Geological Bulletin of China, 2011, 30(12):1851-1856.
|
[21] |
张富贵, 秦爱华, 祝有海, 等. 祁连山冻土区天然气水合物地球化学迁移机理探讨[J]. 矿床地质, 2020, 39(2):326-336.
|
[21] |
Zhang F G, Qin A H, Zhu Y H, et al. A discussion on geochemical migration mechanism of natural gas hydrate in Qilian Mountain permafrost[J]. Mineral Deposits, 2020, 39(2):326-336.
|
[22] |
周亚龙, 杨志斌, 张富贵, 等. 祁连山天然气水合物地球化学勘查方法稳定性和异常重现性分析[J]. 现代地质, 2019, 33(6):1314-1324.
|
[22] |
Zhou Y L, Yang Z B, Zhang F G, et al. The analysis of stability and abnormal reproducibility of geocheemical exploration of natural gas hydrate in Qilian Mountain[J]. Geoscience, 2019, 33(6):1314-1324.
|
[23] |
孙忠军, 方慧, 刘建勋, 等. 祁连山冻土区三露天天然气水合物矿藏勘查模型[J]. 物探与化探, 2017, 41(6):998-1004.
|
[23] |
Sun Z J, Fang H, Liu J X, et al. An exploration model of gas hydrate in Sanlutian permafrost region,Qilian Mountain[J]. Geophysical and Geochemical Exploration, 2017, 41(6):998-1004.
|
[1] |
LIAN Sheng, CHENG Zheng-Pu, LUO Xuan, LI Jing-Jie, TIAN Pu-Yuan. Joint inversion of geophysical data under the guidance of petrophysical properties[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1580-1587. |
[2] |
WANG Hui, FU Shu-Ji, GE Shuai-Yin, MA Fang-Yuan, SONG Bao-Jia, LUO Jing-Cheng. Development and performance tests of maintenance-free ultra-low noise solid nonpolarizing electrodes[J]. Geophysical and Geochemical Exploration, 2022, 46(3): 714-721. |
|
|
|
|