|
|
Application of the natural source surface wave technique to the evaluation of the site of an urban planning area |
CHEN Shi1, JIN Rong-Jie2, LI Yan-Qing1, LI Chong-Bo1, HU Zun-Ping1 |
1. Geological Survey Institute of Xinjiang Uygur Autonomous Region,Urumqi 830000,China 2. Beijing Research Institute of Hydropower and Geophysical Surveying,Beijing 100027,China |
|
|
Abstract As a fast and nondestructive geophysical exploration technique,the natural source surface wave technique performs well in exploration in a complex urban environment by extracting surface waves and other information using the natural earth vibration.This study applied this technique in an urban planning area to ascertain the distribution characteristics of the strata in the area through section interpretation,the extraction of site evaluation parameters including equivalent shear wave velocity and predominant period,and 3D visualized plotting.It can be concluded that the planning area has no concealed fault and thus has excellent site conditions.The results of this study can be utilized as an important reference for the site evaluation of similar areas.
|
Received: 28 December 2021
Published: 24 February 2023
|
|
|
|
|
|
Layout of measuring points of natural source surface wave array
|
|
Work deployment of natural source surface wave
|
|
Surface wave field test results
|
岩性 | vs/(m·s-1) | 砂土层 | <400 | 卵砾石 | 400~700 | 风化泥岩 | >700 |
|
List of wave velocities of main strata in the planning area
|
|
Dispersion curves of different side lengths
|
最大边长/m | 最大探测深度/m | 深度系数 | 24 | 133 | 5.5 | 36 | 145 | 4.0 | 48 | 171 | 3.6 | 64 | 190 | 3.0 |
|
Detection range of array with different side lengths
|
|
Dispersion curve of array comparison test points
|
|
Single point interpretation results of natural source surface wave QZ1 line QZ87(a) and QZ127(b)
|
|
Profile of comprehensive geophysical interpretation of QZ1 line with natural source surface wave technology a—contour map of Rayleigh wave velocity vr of QZ1 line;b—geological profile of QZ1 line
|
线号 | 测点数 | Ⅱ类 | Ⅲ类 | 质量评述 | QZ1 | 41 | 41 | 0 | Ⅱ类场地占比88.57%,Ⅲ类场地占比11.43%。 | QZ2 | 44 | 37 | 7 | QZ3 | 30 | 23 | 7 | QZ4 | 30 | 27 | 3 | QZ5 | 30 | 27 | 3 | 合计 | 175 | 155 | 20 |
|
Statistics of different site types in the planning area
|
|
Excellent period acquisition interface of WD-1 intelligent surface wave instrument
|
卓越周期T/s | 场地土类型 | T<0.17 | 坚硬场地土(I) | 0.17≤T<0.30 | 中硬场地土(II) | 0.30≤T<0.53 | 中软场地土(III) | T≥0.53 | 软弱场地土(IV) |
|
Classification standards for soil types of different sites in the planning area
|
线号 | 点数 | Ⅰ | 百分比/% | Ⅱ | 百分比/% | Ⅲ | 百分比/% | QZ1 | 41 | 6 | 15 | 23 | 56 | 12 | 29 | QZ2 | 44 | 10 | 23 | 24 | 55 | 10 | 23 | QZ3 | 30 | 0 | 0 | 2 | 7 | 28 | 93 | QZ4 | 30 | 0 | 0 | 29 | 97 | 1 | 3 | QZ5 | 30 | 14 | 47 | 15 | 50 | 1 | 3 | 合计 | 175 | 30 | 17.14 | 93 | 53.14 | 52 | 29.71 |
|
Statistics of soil types of different sites in the planning area
|
|
3D visualization graphics processing flow
|
|
3D geological results of the planning area a—3D map of the whole area;b—enlarged drawing of intersection of QZ1 line;c—enlarged drawing of intersection of QZ2 line
|
[1] |
赵镨, 姜杰, 王秀荣. 城市地下空间探测关键技术及发展趋势[J]. 中国煤炭地质, 2017, 29(9):61-66.
|
[1] |
Zhao P, Jiang J, Wang X R. Urban underground space exploration key technologies and development trend[J]. Coal Geology of China, 2017, 29(9):61-66.
|
[2] |
王栩, 王志辉, 陈昌昕, 等. 城市地下空间地球物理探测技术与应用[J]. 地球物理学进展, 2021, 36(5):2204-2214.
|
[2] |
Wang X, Wang Z H, Chen C X, et al. Geophysical exploration and application for urban underground space[J]. Progress in Geophysics, 2021, 36(5):2204-2214.
|
[3] |
马岩, 李洪强, 张杰, 等. 雄安新区城市地下空间探测技术研究[J]. 地球学报, 2020, 41(4):535-542.
|
[3] |
Ma Y, Li H Q, Zhang J, et al. Geophysical technology for underground space exploration in Xiong'an New Area[J] .Acta Geoscientica Sinica, 2020, 41(4):535-542.
|
[4] |
何正勤, 丁志峰, 贾辉, 等. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 2007, 50(2):492-498.
|
[4] |
He Z Q, Ding Z F, Jia H, et al. To determine the velocity structure of shallow crust with surface wave information in Microtremors[J]. Chinese Journal of Geophysics, 2007, 50(2):492-498.
|
[5] |
于淼, 林君. 天然源面波在采空区探测中的应用[J]. 煤炭技术, 2013, 32(12):85-87.
|
[5] |
Yu M, Lin J. Application of natural source surface waves in goaf survey[J]. Coal Technology, 2013, 32(12):85-87.
|
[6] |
徐佩芬, 侍文, 凌苏群, 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012, 55(6):2120-2128.
|
[6] |
Xu P F, Shi W, Ling S Q, et al. Mapping spherically weathered “Boulders”using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012, 55(6):2120-2128.
|
[7] |
刁天仁, 杜霏. 综合物探方法在安徽省岳西县溪沸地热勘探中的应用[J]. 工程地球物理学报, 2019, 16(6):815-821.
|
[7] |
Diao T R, Du F. Application of integrated geophysical exploration method to Xifei geothermal exploration in Yuexi county of Anhui province[J]. Chinese Journal of Engineering Geophysics, 2019, 16 (6):815-821.
|
[8] |
王振东. 面波勘探技术要点与最新进展[J]. 物探与化探, 2006, 30(1):1-6.
|
[8] |
Wang Z D. Essentials and recent advances of the surface wave exploration technique[J]. Geophysical and Geochemical Exploration, 2006, 30(1):1-6.
|
[9] |
孙勇军, 徐佩芬, 凌甦群, 等. 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009, 24(1):326-334.
|
[9] |
Sun Y J, Xu P F, Ling S Q, et al. Microtremor survey method and its progress[J]. Progress in Geophysics, 2009, 24(1):326-334.
|
[10] |
赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2010, 34(6):759-764.
|
[10] |
Zhao D. Passive surface waves:methods and applications[J]. Geophysical and Geochemical Exploration, 2010, 34(6):759-764.
|
[11] |
陈基炜, 赵东东, 宗全兵, 等. 基于线形台阵的高精度微动技术在城区岩性地层精细划分中的应用[J]. 物探与化探, 2021, 45(2):536-545.
|
[11] |
Chen J W, Zhao D D, Zong Q B, et al. High precision microtremor technology based on linear array and its application to the fine division of lithostratigraphy[J]. Geophysical and Geochemical Exploration, 2021, 45(2):536-545.
|
[12] |
李巧灵, 雷晓东, 李晨, 等. 微动测深法探测厚覆盖层结构——以北京城市副中心为例[J]. 地球物理学进展, 2019, 34(4):1635-1643.
|
[12] |
Li Q L, Lei X D, Li C, et al. Exploring thick overburden structure by microtremor survey:a case study in the subsidiary administrative center[J]. Progress in Geophysics, 2019, 34(4):1635-1643.
|
[13] |
王梦迟. 基于SPAC法天然源面波勘探技术研究[D]. 长春: 吉林大学, 2018.
|
[13] |
Wang M C. Study on natural source surface wave prospecting technology based on SPAC[D]. Changchun: Jilin University, 2018.
|
[14] |
刘云祯, 梅汝吾, 叶佩, 等. WD智能天然源面波数据采集处理系统及其应用试验[J]. 物探与化探, 2016, 40(5):1007-1015.
|
[14] |
Liu Y Z, Mei R W, Ye P, et al. Data acquistion and processing system of WD intelligent natural source surface wave and its application test[J]. Geophysical and Geochemical Exploration, 2016, 40(5):1007-1015.
|
[15] |
中华人民共和国住房和城乡建设部. GB50011—2010建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2006.
|
[15] |
Ministry of Housing and Urban-Rural Construction of the People's Republic of China. GB50011—2010 Code for seismic design of buildings[S]. Beijing: China Construction Industry Publishing House, 2006.
|
[16] |
徐佳, 朱鲁, 翟培合. 基于Voxler平台的电法数据体三维可视化[J]. 工程地球物理学报, 2014, 11(6):1672-7940.
|
[16] |
Xu J, Zhu L, Zhai P H. The 3D visualization interpretation of electrical data based on the Voxler platform[J]. Chinese Journal of Engineering Geophysics, 2014, 11(6):1672-7940.
|
[17] |
马龙, 孟军海, 王金海, 等. 基于Voxler软件的重力三维反演数据可视化应用研究[J]. 地球物理学进展, 2018, 33(3):1255-1261.
|
[17] |
Ma L, Meng J H, Wang J H, et al. Application of visualization of gravity 3D inversion data based on Voxler software[J]. Progress in Geophysics, 2018, 33(3):1255-1261.
|
[1] |
Shi CHEN, Yan-Qing LI, Tong-He LI, Rong-Jie JIN, Jing ZHANG. The application of natural source surface wave technology to urban geological survey of Urumqi[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1389-1398. |
[2] |
LIU Yun-Zhen, MEI Ru-Wu, YE Pei, JIN Rong-Jie. Data acquisition and processing system of WD intelligent natural source surface wave and its application test[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 1007-1015. |
|
|
|
|