|
|
Frequency-domain 2D seismic forward modeling method based on the LSCG method and the wavenumber compensation |
ZHANG Ru-Hua1( ), ZHANG Dong-Jun1, HUANG Jian-Ping2, GOU Qi-Yong1, ZHOU Jia-Ni3 |
1. Shale Gas Research Institute,PetroChina Southwest Oil & Gas field Company,Chengdu 610051,China 2. School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China 3. Chendu Engineering Corporation Limited,Power China,Chengdu 610072,China |
|
|
Abstract The seismic forward modeling technique is critical to seismic exploration.Moreover,it shows a faster rate and higher calculation efficiency in the frequency domain than in the time domain.Presently,there is a need to complete the forward calculation in the frequency domain efficiently and accurately.The specific problems include the numerical dispersion and the high memory consumption for calculating and decomposing impedance,which should be reduced by improving the calculation efficiency.Different from the conventional direct method,this study adopted the least-squares conjugate gradient (LSCG) method used to determine the impedance matrix for the frequency-domain forward modeling and proposed an expression for wavenumber compensation to suppress the numerical dispersion.The numerical tests of simple and complex models show that the LSCG method can effectively reduce the calculation time and that the frequency-domain forward modeling method based on wavenumber compensation can effectively suppress the numerical dispersion and thus improve the precision of wave field simulation.
|
Received: 25 December 2021
Published: 27 April 2023
|
|
|
|
|
|
Nine-point difference format
|
|
Frequency domain forward flow chart
|
|
Sag model
|
|
Frequency slices of 20 Hz(a) and 36 Hz(b) in the forward modeling of sag model
|
计算效率 | 直接高斯 消元法 | 最小二乘共 轭梯度LSCG | 不完全 LU分解 | 最小二乘 正交法 | 计算时间/s | 95.6 | 72.3 | 84.7 | 74.5 | 占用内存/GB | 1.5 | 0.3 | 1.4 | 0.4 | 单次求解方程 平均耗时/s | 1.35 | 1.03 | 1.19 | 1.06 |
|
Comparison of forward calculation efficiency of sag model
|
|
Single shot record for forward modeling of sag model a—using wavenumber compensation;b—no wavenumber compensation
|
|
Canadian rockies model
|
|
Frequency slices of 20 Hz(a) and 36 Hz(b) in the forward modeling of Canadian rockies model
|
|
Snapshot of the wave field at 1.2 s(25 Hz) a—using wavenumber compensation;b—no wavenumber compensation
|
|
Snapshot of the wave field at 1.2 s(35 Hz) a—using wavenumber compensation;b—no wavenumber compensation
|
计算效率 | 直接高斯 消元法 | 最小二乘共 轭梯度LSCG | 不完全 LU分解法 | 最小二乘 正交法 | 计算时间/s | 153.3 | 127.2 | 148.3 | 130.3 | 占用内存/GB | 2.3 | 0.56 | 2.1 | 0.7 | 单次求解方程 平均耗时/s | 1.91 | 1.59 | 1.85 | 1.63 |
|
Computational time required for four different forward modeling methods for solving impedance matrix in complex model forward modeling
|
|
The Canadian rockies model forwards a single shot record a—using wavenumber compensation;b—no wavenumber compensation
|
|
Comparison and analysis of the 100th single-channel forward simulation a—using wavenumber compensation;b—no wavenumber compensation
|
|
Comparison of analytical solution signal and received signal by the method in this paper
|
[1] |
陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5):91-96.
|
[1] |
Cheng K Y. Numerical simulation of forward modeling of wavefield separation of directional traveling waves in anisotropic elastic media[J]. Lithologic Reservoirs, 2014, 26(5):91-96.
|
[2] |
苏巍. 河流相砂岩储层地震响应特征与识别技术研究[D]. 长春: 吉林大学, 2007.
|
[2] |
Su W. A study on seismic response characteristic and identification technology of fluvial sandstone reservoir[D]. Changchun: Jilin University, 2007.
|
[3] |
Lysmer J, Drake L A. A finite element method for seismology[J]. Methods in Computational Physics:Advances in Research and Applications, 1972, 11:181-216.
|
[4] |
Shin C S. Nonlinear elastic wave Inversion by Blocky Parameterization[D]. Tulsa: University of Tulsa, 1988.
|
[5] |
Jo C, Shin C, Suh J. An optimal 9-point finite-difference frequency space 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.
|
[6] |
Min J, Shin C, Kwon B, et al. Improved frequency-domain elastic wave modeing using weighted-averaging difference operators[J]. Geophysics, 2000, 65(3):884-895.
|
[7] |
Stekl I, Pratt K G. Frequency-domain finite accurate difference visco-elastic modeing by using rotated operators[J]. Geophysics, 1998, 63(5):1779-1794.
|
[8] |
Hustedt B, Opert S, Virieux J. Mixed-grid and staggered grid finite-difference methods for frequency-domain acoustic wave modeling[J]. Geophysics, 2004, 157(3):1269-1296.
|
[9] |
Paige C C, Saunders M A. LSQR:An algorithm for sparse liner equation and sparse least squares[J]. ACM Transaction Mathematical Software, 1982, 8(1):43-71.
|
[10] |
Bjorck A, Duff I S. A direct method for the solution of sparse liner least squares problems[J]. Linear Algebra and its Applications, 1980, 34(1):43-67.
|
[11] |
张京思, 揣媛媛, 边立恩. 正演模拟技术在渤海油田 X 井区砂体连通性研究中的应用[J]. 岩性油气藏, 2016, 28(3):127-132.
|
[11] |
Zhang J S, Tuan Y Y, Bian L E. Application of forward modeling to study of sand body connectivityin X well field of Bohai Oilfield[J]. Lithologic Reservoirs, 2016, 28(3):127-132.
|
[12] |
冯德山, 王向宇. 基于卷积完全匹配层的旋转交错网格高阶差分法模拟弹性波传播[J]. 物探与化探, 2018, 42(4):766-776.
|
[12] |
Feng D S, Wang X Y. Elastic wave propagation simulation in anisotropic media and random media using high-order difference method of rotation staggered grids based on convolutional perfectly matched layer[J]. Geophysical and Geochemical Exploration, 2018, 42( 4) :766-776.
|
[13] |
袁茂林, 蒋福友, 杨鸿飞, 等. 高斯束线性正演模拟方法研究[J]. 物探与化探, 2017, 41(5):881-889.
|
[13] |
Yuan M L, Jiang F Y, Yang H F, et al. Gaussian-beam linear forward modeling[J]. Geophysical and Geochemical Exploration, 2017, 41(5):881-889.
|
[14] |
李胜军, 刘伟方, 高建虎. 正演模拟技术在碳酸盐岩溶洞响应特征研究中的应用[J]. 岩性油气藏, 2011, 23(4):106-109.
|
[14] |
Li S J, Liu W F, Gao J H. Application of forward modeling to research of carbonate cave response[J]. Lithologic Reservoirs, 2011, 23(4):106-109.
|
[15] |
王光文, 王海燕, 李洪强, 等. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4):970-980.
|
[15] |
Wang G W, Wang H Y, Li H Q, et al. Application of seismic forward simulation technology in deep reflection seismic profile detection[J]. Geophysical and Geochemical Exploration, 2021, 45( 4) :970-980.
|
[16] |
董良国, 李培明. 地震波传播数值模拟中的频散问题[J]. 天然气工业, 2004, 24(6):53-56.
|
[16] |
Dong L G, Li P M. Dispersion problem in numerical simulation of seismic wave propagation[J]. Natural Gas Industry, 2004, 24(6):53-56.
|
[17] |
曹书红, 陈景波. 声波方程频率域高精度正演的17点格式及数值实现[J]. 地球物理学报, 2012, 55(10):3440-3449.
|
[17] |
Cao S H, Chen J B. A 17-point Scheme and its numerical implementation for high-accuracy modeling of frequency-domain acoustic equation[J]. Chinese Journal of Geophysics, 2012, 55(10):3440-3449.
|
[1] |
CHEN Zi-Long, WANG Hai-Yan, GUO Hua, WANG Guang-Wen, ZHAO Yu-Lian. A review of the research progress and application status of seismic full waveform inversion[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 628-637. |
[2] |
XIE Xing-Long, MA Xue-Mei, LONG Hui, MING Yuan-Yuan, SUN Sheng. Curvelet transform-based denoising of resonance interference induced by electrical poles in seismic exploration[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 474-481. |
|
|
|
|