|
|
Application of tectonic primary halos in the exploration of deep concealed ore bodies: A case study of the Niuxingba plumbum-zinc-gold-silver deposit in Yinkeng, southern Jiangxi |
CHEN Wei1( ), TAN You1, CAO Zheng-Duan1, LIAO Zhi-Quan1, ZHANG Ning-Fa1, FU Hai-Hui2 |
1. The Seventh Geological Brigade of Jiangxi Bureau of Geology, Ganzhou 341000, China 2. Jiangxi Runpeng Mining Co., Ltd. of Ganzhou, Ganzhou 341000, China |
|
|
Abstract The Niuxingba plumbum-zinc-gold-silver deposit (the Niuxingba deposit) occurs in the Yinkeng ore field at the intersection of the EW-trending Nanling metallogenic belt and the NNE-striking Wuyishan metallogenic belt. It is a typical hydrothermal vein deposit under the strict control of fault structures, with ore bodies occurring as vein groups. To predict the deep prospecting potential of the No. V31 major ore belt (body) of the Niuxingba deposit, this study systematically investigated the axial (vertical), transverse, and longitudinal geochemical characteristics and zoning of tectonic primary halos of the ore belt (body) based on the geological characteristics of the deposit. Then, this study determined the axial zoning sequence and the geological-geochemical model of tectonic primary halos. It was confirmed that this model was correct, reasonable, and reliable using the multivariate statistical method. The results of the geological-geochemical model show that: ① the front halo of the Niuxingba deposit has F as the indicator element; ② the near-ore halo has two types of indicator elements: the gold mineralization-related As-Au element association in the middle and upper parts of the ore body and the Pb-Zn-Ag mineralization-related Hg-Zn-Pb-Ag-Cu-Bi-Sb element association in the middle part of the ore body; ③ the rear halo has the Mo-Cr-Co-Ni element association as indicator elements; ④ the anomaly centers of the front, near-ore, and rear halos are about 200~300 m apart axially, suggesting significant coexistence of front and rear halos and the presence of inflection points of the near-ore halo broken line. Furthermore, the transformation of low-moderate-temperature Pb-Zn-Ag-Au mineralization into moderate-high-temperature Cu-Zn mineralization occurs eastward. These characteristics indicate that the No. V31 main ore belt (body) has a pitch direction of east and a large extension toward the deep part (to an elevation of -200 m at least), implying that blind ore bodies may occur. As verified by deep drilling in the eastern concealed area (the lowest ore-controlled elevation of the No. 367 survey line: -165 m), the eastern deep part of the No. V31 ore belt (body) has a high potential for increasing reserves.
|
Received: 19 November 2021
Published: 11 October 2023
|
|
|
|
|
|
Diagram of geological mineral resources (b) and tectonic location (a) of Yinkeng ore field in Jiangxi Province 1—upper Cretaceous Zhoutian formation;2—upper Cretaceous Maodian formation;3—middle Jurassic Luo'ao formation;4—upper Permian Leping formation;5—middle and lower Permian strata;6—upper Carboniferous Dapu formation;7—lower Carboniferous Zishan formation;8—middle-upper Devonian Xiashan group;9—lower Cambrian Niujiaohe formation;10—upper Sinian Laohutang formation;11—lower Sinian Bali formation;12—upper Nanhua system Shaba huang formation;13—lower Nanhua system Shangshi formation;14—upper Qingbaikou system Kuli formation;15—Cretaceous andesite;16—third stage of Jurassic granite;17—second stage of Jurassic granite;18—first stage of Jurassic granite;19—Triassic granite;20—second stage of Silurian granites;21—first stage of Silurian granites;22—first stage of Silurian quartz diorite;23—rock strata attitude;24—fault of unknown nature;25—inferred fault;26—boundary of unconformity;27—observed geologic boundary;28—lead zinc ore;29—tungsten ore;30—gold ore;31—silver ore;32—manganese ore;33—pyrites;34—range of Yinkeng ore field
|
|
Geological diagram of Niuxingba Pb-Zn-Au-Ag polymetallic deposit in Yinkeng 1—Quaternary Holocene-Pleistocene;2—lower Cretaceous Shixi formation;3—middle Jurassic Luo'ao formation;4—middle Permian Chetou formation;5—middle Permian Xiaojiangbian formation;6—middle Permian Qixia formation;7—upper Nanhua system Shabahuang formation;8—lower Nanhua system Shangshi formation;9—upper Qingbaikou system Kuli formation;10—dioritic porphyrite;11—granite porphyry;12—granodiorite-porphyry;13—quartz porphyry;14—cryptoexplosive breccia;15—fault structure and occurrence;16—thrust nappe structure;17—geological boundary;18—lead,zinc,gold and silver ore bodies;19—siliceous dolomite lead-zinc zone;20—attitude of stratum;21—exploration line and No.;22—completed borehole
|
|
Comprehensive geological profile of east-west nearly vein-type ore belt (body)in Niuxingba mining area, Yinkeng 1—middle Jurassic Luo'ao formation;2—upper Qingbaikou system Kuli formation;3—mudstone,fine sandstone;4—slate,metatuff;5—granite porphyry;6—quartz porphyry;7—granodiorite-porphyry;8—ore zone (body) and number;9—fracture and number;10—gallery;11—borehole
|
参数 | Hg | As | Au | Sb | Cu | Pb | Zn | Ag | W | Sn | Mo | Bi | Cr | Co | Ni | Nb | U | F | Mn | T | 30 | 40 | 160 | 1 | 80 | 2560 | 2560 | 2 | 2 | 5 | 1 | 1 | 30 | 12 | 20 | 10 | 2 | 560 | 5120 | 2T | 60 | 80 | 320 | 2 | 160 | 5120 | 5120 | 4 | 4 | 10 | 2 | 2 | 60 | 24 | 40 | 20 | 4 | 1120 | 10240 | 4T | 120 | 160 | 640 | 4 | 320 | 10240 | 10240 | 8 | 8 | 20 | 4 | 4 | 120 | 48 | 80 | 40 | 8 | 2240 | 20480 |
|
Zonation of concentration of primary halo elements in V31 ore body (ore belt) in Niuxingba deposit
|
|
Zonation diagram of axial(vertical)primary halo element concentration in exploration line 308 of V31 orebody in Niuxingba deposit 1—upper Qingbaikou system Kuli formation;2—early Yanshanian granitic porphyry;3—fault structure;4—ore body and number;5—middle section and elevation of gallery;6—borehole number and hole depth;7—sampling point position
|
元素 | 标准化系数 | 标准化后线金属量/(10-6·m) | 分带指数 | ZK3082 | ZK3083 | ZK3085 | ZK3082 | ZK3083 | ZK3085 | F | 1 | 274138 | 108391 | 243277 | 0.116 | 0.027 | 0.040 | Cr | 10 | 64589 | 109003 | 243034 | 0.027 | 0.027 | 0.040 | Pb | 1 | 0 | 388269 | 473770 | 0 | 0.096 | 0.078 | Zn | 1 | 254561 | 672500 | 622247 | 0.107 | 0.167 | 0.102 | Cu | 10 | 83428 | 175270 | 124358 | 0.035 | 0.044 | 0.020 | Ag | 1000 | 329491 | 621910 | 547313 | 0.139 | 0.155 | 0.090 | Au | 10 | 650032 | 157066 | 246243 | 0.274 | 0.039 | 0.040 | As | 100 | 224395 | 321548 | 458528 | 0.095 | 0.080 | 0.075 | Sb | 1000 | 48776 | 342121 | 162737 | 0.021 | 0.085 | 0.027 | Hg | 10 | 66669 | 150252 | 218428 | 0.028 | 0.037 | 0.036 | Co | 100 | 30380 | 95564 | 168190 | 0.013 | 0.024 | 0.028 | Ni | 100 | 0 | 187325 | 319405 | 0 | 0.047 | 0.052 | Mo | 1000 | 126456 | 119470 | 349496 | 0.053 | 0.030 | 0.057 | U | 1000 | 0 | 40835 | 251349 | 0 | 0.010 | 0.041 | Nb | 100 | 0 | 0 | 255593 | 0 | 0 | 0.042 | W | 1000 | 71380 | 69339 | 364321 | 0.030 | 0.017 | 0.060 | Sn | 1000 | 0 | 126831 | 578425 | 0 | 0.032 | 0.095 | Bi | 1000 | 145978 | 338520 | 463804 | 0.062 | 0.084 | 0.076 | 总和 | 2370273 | 4024214 | 6090519 | | | |
|
Zonation index of halo-forming elements and axial mineralization in exploration line 308 in Niuxingba deposit
|
|
Geological-geochemical profile of the transverse primary halo in the middle section of -20 m of V31 orebody in exploration line 303 in Niuxingba deposit 1—silty tuff;2—tuffaceous phyllite;3—granodiorite-porphyry;4—lead,zinc,gold and silver ore bodies and number;5—fracture zone;6—conductor number and bearing (slope angle);7—occurrence;8—primary halo sample and number;9—silicification
|
|
Geological-geochemical profile of longitudinal primary halo in the middle section of -20 m of V31 orebody in Niuxingba deposit
|
元素 | Au | Hg | Ag | Cu | Pb | Zn | As | Sb | Bi | W | Mo | Sn | Cr | Co | Ni | U | Nb | F | Au | 1.00 | | | | | | | | | | | | | | | | | | Hg | 0.16 | 1.00 | | | | | | | | | | | | | | | | | Ag | 0.19 | 0.50 | 1.00 | | | | | | | | | | | | | | | | Cu | 0.13 | 0.53 | 0.85 | 1.00 | | | | | | | | | | | | | | | Pb | 0.19 | 0.14 | 0.26 | 0.10 | 1.00 | | | | | | | | | | | | | | Zn | 0.31 | 0.76 | 0.64 | 0.63 | 0.35 | 1.00 | | | | | | | | | | | | | As | 0.39 | 0.31 | 0.39 | 0.25 | 0.19 | 0.47 | 1.00 | | | | | | | | | | | | Sb | 0.01 | 0.40 | 0.82 | 0.94 | 0.05 | 0.46 | 0.22 | 1.00 | | | | | | | | | | | Bi | 0.04 | 0.06 | 0.52 | 0.15 | -0.01 | 0.07 | 0.10 | 0.14 | 1.00 | | | | | | | | | | W | 0.06 | 0.07 | 0.19 | 0.04 | 0.14 | 0.09 | 0.21 | -0.02 | 0.24 | 1.00 | | | | | | | | | Mo | 0.02 | 0.07 | 0.02 | 0.00 | 0.01 | 0.04 | 0.10 | -0.01 | 0.03 | 0.04 | 1.00 | | | | | | | | Sn | 0.10 | 0.11 | 0.29 | 0.13 | 0.07 | 0.18 | 0.39 | 0.09 | 0.27 | 0.66 | 0.04 | 1.00 | | | | | | | Cr | -0.06 | -0.04 | -0.10 | -0.10 | -0.11 | -0.17 | -0.03 | -0.08 | 0.03 | -0.06 | 0.08 | -0.10 | 1.00 | | | | | | Co | -0.03 | 0.00 | -0.04 | -0.04 | -0.07 | -0.08 | 0.20 | -0.03 | 0.01 | -0.04 | 0.18 | -0.06 | 0.61 | 1.00 | | | | | Ni | -0.03 | 0.02 | -0.03 | -0.03 | -0.06 | -0.06 | 0.21 | -0.02 | 0.02 | 0.02 | 0.18 | -0.01 | 0.53 | 0.92 | 1.00 | | | | U | -0.06 | -0.11 | 0.09 | -0.04 | -0.06 | -0.17 | -0.01 | -0.02 | 0.34 | 0.42 | 0.04 | 0.38 | 0.04 | -0.07 | -0.04 | 1.00 | | | Nb | -0.18 | -0.23 | -0.14 | -0.13 | -0.11 | -0.23 | -0.21 | -0.09 | 0.02 | 0.14 | -0.15 | 0.07 | 0.03 | -0.18 | -0.19 | 0.52 | 1.00 | | F | 0.06 | 0.04 | 0.01 | -0.01 | -0.01 | -0.02 | 0.00 | 0.01 | 0.11 | 0.22 | -0.07 | 0.16 | -0.05 | -0.07 | -0.08 | 0.07 | 0.12 | 1.00 |
|
Correlation coefficient matrix of ore-halo forming elements in Niuxingba deposit
|
|
R-type cluster analysis pedigree diagram of mineralization-forming halo of V31 ore belt (body) in Niuxingba deposit
|
因子 | 因子组成 | 方差贡献 百分率/% | 累积百 分率/% | F1 | F1=0.696Hg+0.915Ag+0.852Cu+0.516Pb+0.829Zn+0.557As+0.761Sb | 23.539 | 23.539 | F2 | F2=0.562Mo+0.857Co+0.824Ni+0.610Cr | 14.524 | 38.063 | F3 | F3=0.452Bi+0.667W+0.623Sn+0.676U+0.521Nb | 12.979 | 51.042 | F4 | F4=0.540Au+0.538As | 9.080 | 60.123 | F5 | F5=0.639F | 5.732 | 65.855 | Pb因子模型 | Pb=0.316F1-0.041F2-0.074F3+0.421F4-0.027F5 | | | Zn因子模型 | Zn=0.829F1+0.071F2-0.209F3+0.187F4+0.054F5 | | | Au因子模型 | Au=0.330F1+0.052F2-0.024F3+0.540F4+0.133F5 | | | Ag因子模型 | Ag=0.915F1-0.033F2+0.071F3-0.271F4-0.076F5 | | |
|
Maximum variance rotating orthogonal factor
|
|
The geological-geochemicalmodel of tectonicprimary halo in Niuxingba Pb-Zn-Au deposit 1—silty tuff;2—tuffaceous phyllite;3—granodiorite-porphyry;4—silicification crushing zone;5—ore body;6—near-halo anomaly;7—leading edge halo anomaly;8—tail halo anomaly
|
|
Schematic diagram of axial zonation of primary halo in V31 orebody in Niuxingba deposit 1—upper Qingbaikou system Kuli formation;2—early Yanshanian granitic porphyry;3—ore body and number;4—middle section and elevation;5—borehole number and hole depth;6—known/predicted ore bodies;7—near-halo anomaly;8—leading edge halo anomaly;9—tail halo anomaly
|
|
The ore discovery of deep drilling engineering of exploration line 367 in Niuxingba deposit 1—Quaternary system;2—lower Nanhua system Shangshi formation;3—early Yanshanian granodiorite-porphyry;4—ore body and number
|
[1] |
赵正, 陈毓川, 曾载淋, 等. 江西银坑W-Ag-Au多金属矿田成矿规律与找矿方向:兼论华南两个成矿系列叠加问题[J]. 地学前缘, 2017, 24(5):54-61.
|
[1] |
Zhao Z, Chen Y C, Zeng Z L, et al. Jiangxi Yinkeng W-Ag-Au ore field’s metallogenic regularity and prospecting direction:As well as the superposition of two metallogenic series in Southern China[J]. Earth Science Frontiers, 2017, 24(5):54-61.
|
[2] |
郭娜欣, 陈毓川, 赵正, 等. 南岭科学钻中与两种岩浆岩有关的矿床成矿系列——年代学、地球化学、Hf同位素证据[J]. 地球学报, 2015, 36(6):742-754.
|
[2] |
Guo N X, Chen Y C, Zhao Z, et al. Metallogenic series related to two types of granitoid exposed in the Nanling scientific drill hole:Evidence from geochronology,geochemistry and Hf isotope[J]. Acta Geoscientica Sinica, 2015, 36(6):742-754.
|
[3] |
毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10):2329-2338.
|
[3] |
Mao J W, Xie G Q, Guo C L, et al. Large-scale tungsten-tin mineralization in the Nanling region,South China:Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 2007, 23(10):2329-2338.
|
[4] |
赵正, 陈毓川, 陈郑辉, 等. 赣南银坑矿田高山角花岗闪长岩SHRIMP U-Pb定年及其与成矿的关系[J]. 岩矿测试, 2012, 31(3):536-542.
|
[4] |
Zhao Z, Chen Y C, Chen Z H, et al. SHRIMP U-Pb dating of the Gaoshanjiao granodiorite in the Yinkeng ore-field of the south Jiangxi region and its relations to mineralization[J]. Rock and Mineral Analysis, 2012, 31(3):536-542.
|
[5] |
陈玉明, 王开天. 秘鲁胡斯塔铜矿原生晕地球化学特征及找矿效果[J]. 物探与化探, 2008, 32(2):126-130.
|
[5] |
Chen Y M, Wang K T. Lithogeo chemical characteristics of the Justa copper deposit in Peru and the ore-prospecting effect[J]. Geophysical and Geochemical Exploration, 2008, 32(2):126-130.
|
[6] |
章永梅, 顾雪祥, 程文斌, 等. 内蒙古柳坝沟金矿床原生晕地球化学特征及深部成矿远景评价[J]. 地学前缘, 2010, 17(2):209-221.
|
[6] |
Zhang Y M, Gu X X, Cheng W B, et al. The geochemical features of primary halo and the evaluation of deep min-eralization prospect of Liubagou gold deposit,Inner Mongolia[J]. Earth Science Frontiers, 2010, 17(2):209-221.
|
[7] |
刘光永, 戴茂昌, 祁进平, 等. 福建省紫金山铜金矿床原生晕地球化学特征及深部找矿前景[J]. 物探与化探, 2014, 38(3):434-440.
|
[7] |
Liu G Y, Dai M C, Qi J P, et al. Geochemical characteristics of primary halos and ore-search prospecting in the depth of the Zijinshan copper-gold deposit,Fujian province[J]. Geophysical and Geochemical Exploration, 2014, 38(3):434-440.
|
[8] |
刘怀金, 杨永强, 孙引强, 等. 内蒙古边家大院铅锌银多金属矿床原生晕地球化学特征及深部找矿预测[J]. 地质找矿论丛, 2016, 31(2):245-252.
|
[8] |
Liu H J, Yang Y Q, Sun Y Q, et al. The primary halo characteristics of Bianjiadayuan Pb-Zn-Ag Polymetallic deposit in Inner Mongolia,China and ore prediction to depth[J]. Contributions to Geology and Mineral Resources Research, 2016, 31(2):245-252.
|
[9] |
方贵聪, 陈郑辉, 陈毓川, 等. 石英脉型钨矿原生晕特征及深部成矿定位预测——以赣南淘锡坑钨矿11号脉为例[J]. 大地构造与成矿学, 2012, 36(3):406-412.
|
[9] |
Fang G C, Chen Z H, Chen Y C, et al. Characteristics of primary halos for quartz vein-type tungsten deposits and its implication in locating ore bodies at depth—A case study of the Taoxikeng deposit,Southern Jiangxi Province[J]. Geotectonica et Metallogenia, 2012, 36(3):406-412.
|
[10] |
邵跃. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社, 1997.
|
[10] |
Shao Y. Rock measurement (primary halo method) for prospecting of hydrothermal deposits[M]. Beijing: Geological Publishing House, 1997.
|
[11] |
李厚民, 孙继东, 沈远超, 等. 东昆仑五龙沟金矿床Ⅲ矿段原生晕特征及模式[J]. 地质地球化学, 2001, 29(3):109-116.
|
[11] |
Li H M, Sun J D, Shen Y C, et al. Primary dispersion halo and its model in Ⅲ ore segment of wulonggou gold deposit east Kunlun mountains[J]. Geology-Geochemistry, 2001, 29(3):109-116.
|
[12] |
李强, 孙继东, 杨兴科, 等. 新疆石英滩金矿床原生晕特征与隐伏矿预测[J]. 地质与勘探, 2005, 41(4):66-72.
|
[12] |
Li Q, Sun J D, Yang X K, et al. Character istic of primary halo and prediction of hidden orebody of shiyingtan gold deposit in Xin jiang[J]. Geology and Prospecting, 2005, 41(4):66-72.
|
[13] |
戚长谋. 元素地球化学分类探讨[J]. 长春科技大学学报, 1991, 21(4):361-365.
|
[13] |
Qi C M. A discussion for geochemical classifi-cation of elements[J]. Journal of Changchun Universi-ty of Earth Science, 1991, 21(4):361-365.
|
[14] |
李惠, 张文华, 刘宝林, 等. 中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则[J]. 地质与勘探, 1999, 35(1):32-35.
|
[14] |
Li H, Zhang W H, Liu B L, et al. The study on axial zonality sequence of primary halo and some criteria for the application of this sequence for major types of gold deposits in China[J]. Geology and Prospecting, 1999, 35(1):32-35.
|
[1] |
TAI Wen-Xing, YANG Cheng-Fu, JIN Xiao-Ye, SHAO Yun-Bin, LIU Guang-Fu, ZHAO Ping, WANG Ze-Peng, TAN Li-Jin. Application of the multi-dimensional study of geochemical anomalies in deep metallogenic prediction of the Zhexiang gold deposit in southwestern Guizhou, China[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 856-867. |
[2] |
ZHANG Jin-Ai, YANG Yuan, ZHANG Lin. Spatial distribution patterns of concealed plutons in the western Zhen’an area based on gravity anomalies[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 618-627. |
|
|
|
|