|
|
Identification of footwalls and roofs of coal seams in underground coal mines using borehole radar |
LIU Si-Xin( ), SHI Wei, SONG Zi-Hao, CHEN Chun-Lin, DAI Zheng |
College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China |
|
|
Abstract In coal mining, the accurate determination of the locations of the footwalls and roofs of coal seams and the identification of the geological structures that threaten the safety of excavation are important measures to ensure safe coal mining. This study proposed a technique for detecting the footwalls and roofs of coal seams, which consisted of a mining face-based borehole radar detection method for underground coal mines and a data processing process. Then, this study applied this technique to the Xinyuan coal mine. Specifically, radar profiles were denoised and enhanced through the correction of zero-moment point, DC elimination, band-pass filtering, direct wave removal, and gain processing of measured borehole radar data of boreholes along a mining face of the Xinyuan coal mine. Then, the locations of the roofs and footwalls of coal seams in the underground coal mines were identified and presented through a series of processing and interpretation, including velocity pickup, reflective surface extraction, and diffraction stack migration, as well as time-depth conversion, flipping, splicing, and the correction of borehole trajectories. The technique proposed in this study serves as an effective means for the safe operation of coal mines and thus is of value for promotion.
|
Received: 15 August 2022
Published: 27 April 2023
|
|
|
|
|
|
Schematic diagram of single-hole reflection measurement in a coal seam
|
|
Schematic diagram of speed estimation model
|
|
Processing and interpretation methods and flow chart
|
|
Measured data processing results
|
|
Measured data wave speed estimation results
|
|
Pick-up, offset, merge and drill trajectory correction of measured data
|
|
Radar vs. top and bottom plate position measured by back mining
|
| 深度/m | 4 | 6 | 8 | 10 | 12 | 14 | 顶板误差/m | 0.05 | 0.15 | 0.15 | 0.25 | 0.30 | 0.40 | 底板误差/m | 0.30 | 0.20 | 0.50 | 0.40 | 0.25 | 0 |
|
Error analysis of top and bottom plate measured by radar and back mining
|
[1] |
国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
|
[1] |
National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2020.
|
[2] |
宁小亮. 2013—2018年全国煤矿事故规律分析及对策研究[J]. 工矿自动化, 2020, 46(7):34-41.
|
[2] |
Ning X L. Law analysis and counter measures research of coal mine accidents in China from 2013 to 2018[J]. Industry and Mine Automation, 2020, 46(7):34-41.
|
[3] |
张传来, 宋敏. 顶板事故的地质原因分析[J]. 采矿与岩层控制工程学报, 2006, 11(5):59-60,91.
|
[3] |
Zhang C L, Song M. Geological cause analysis of roof disaster[J]. Journal of Mining And Strata Control Engineering, 2006, 11(5):59-60,91.
|
[4] |
Cook J C. Borehole-radar exploration in a coal seam[J]. Geophy-sics, 1977, 42(6):1254-1257.
|
[5] |
王国彪, Mowrey G L. 前景广大的煤界面探测法[J]. 煤矿自动化, 1992(3):57-60.
|
[5] |
Wang G B, Mowrey G L. The promising coal interface detection method[J]. Journal of Mine Automation, 1992(3):57-60.
|
[6] |
虎维岳, 南生辉. 雷达探测技术及应用[J]. 煤田地质与勘探, 1997, 25(S1):68-71.
|
[6] |
Hu W Y, Nan S H. Radar measurement technique and application[J]. Coal Geology & Exploration, 1997, 25(S1):68-71.
|
[7] |
宋雷, 黄家会, 杨维好. 钻孔地质雷达工作原理及应用[J]. 物探与化探, 1999, 23(6):454-458.
|
[7] |
Song L, Huang J H, Yang W H. The principle and application of geological dillhole radar[J]. Geophysical and Geochemical Exploration, 1999, 23(6):454-458.
|
[8] |
黄家会, 宋雷, 崔广心, 等. 应用跨孔雷达层析成像技术研究深部岩层特性[J]. 中国矿业大学学报, 1999, 28(6):61-64.
|
[8] |
Huang J H, Song L, Cui G X, et al. Application of crosshole radar tomography in studying characteristics of strata in depths[J]. Journal of China University of Mining & Technology, 1999, 28(6):61-64.
|
[9] |
王驹, 陈伟明, 张鹏, 等. 钻孔雷达在高放废物处置库场址评价中的应用——以北山1号孔为例[J]. 铀矿地质, 2005, 21(6):42-45.
|
[9] |
Wang J, Chen W M, Zhang P, et al. Application of borehole radar to site characterization of high-level radioactive waste repository:Taking Beishan borehole No.1 as an example[J]. Uranium Geology, 2005, 21(6):42-45.
|
[10] |
钟声, 王川婴, 吴立新, 等. 点状不良地质体钻孔雷达响应特征的形状效应正演分析[J]. 岩土力学, 2011, 32(5):1583-1588.
|
[10] |
Zhong S, Wang C Y, Wu L X, et al. Borehole radar response characteristics of point unfavorable geo-bodies:Forward simulation on its geometric effect[J]. Rock and Soil Mechanics, 2011, 32(5):1583-1588.
|
[11] |
朱成成. 钻孔雷达电磁波传播及异常地质体探测[D]. 长春: 吉林大学, 2018.
|
[11] |
Zhu C C. Propagation of borehole radar's elec-tromagnetic wave and detection to abnormal geo-bodies[D]. Changchun: Jilin University, 2018.
|
[12] |
刘四新, 宋梓豪, 程建远, 等. 利用钻孔雷达探测煤矿井下顶底板界面的数值模拟研究[J]. 世界地质, 2021, 40(3):711-720.
|
[12] |
Liu S X, Song Z H, Cheng J Y, et al. Numerical simulation research on detecting underground coal mine roof and floor using borehole radar[J]. World Geology, 2021, 40(3):711-720.
|
[13] |
曾昭发, 刘四新, 冯晅, 等. 探地雷达原理与应用[M]. 北京: 电子工业出版社, 2010.
|
[13] |
Zeng Z F, Liu S X, Feng X, et al. Ground-penetrating radar principles and applications[M]. Beijing: Publishing House of Electronics Industry, 2010.
|
[14] |
闫维存. 碳酸盐岩裂缝构造的钻孔雷达响应规律研究[D]. 长春: 吉林大学, 2021.
|
[14] |
Yan W C. Borehole Radar Response Research to Carbonate Fracture[D]. Changchun: Jilin University, 2021.
|
[15] |
王培, 刘柯, 王选琳, 等. “钻孔雷达+钻孔电视”精细化探测技术的应用[J]. 采矿技术, 2021, 21(3):148-150,160.
|
[15] |
Wang P, Liu K, Wang X L, et al. Application of “borehole radar + borehole TV” refined detection technology[J]. Mining Technology, 2021, 21(3):148-150,160.
|
[16] |
冯晅, 曾昭发, 刘四新, 等. 探地雷达信号处理[M]. 北京: 科学出版社, 2014:182.
|
[16] |
Feng X, Zeng Z F, Liu S X, et al. Ground-penetrating radar signal processing[M]. Beijing: Science Press, 2014:182.
|
[17] |
何樵登, 韩立国, 王德利. 地震勘探[M]. 北京: 地质出版社, 2009:220.
|
[17] |
He Q D, Han L G, Wang D L. Seismic exploration[M]. Beijing: Geological Publishing House, 2009:220.
|
[18] |
Fisher E, McMechan G A, Annan A P. Acquisition and processing of wide-aperture ground-penetrating radar data[J]. Geophysics, 1992, 57(3):495-504.
|
[19] |
Maijala P. Application of some seismic data processing methods to ground penetrating radar data[J]. Special Paper-Geological Survey of Finland, 1992(16):103-110.
|
[20] |
张理轻, 马晔, 杨宇. 钻孔雷达数据处理技术及分析[J]. 地震工程学报, 2014, 36(4):1107-1112.
|
[20] |
Zhang L Q, Ma Y, Yang Y. Study on data processing techniques of borehole radar[J]. China Earthquake Engineering Journal, 2014, 36(4):1107-1112.
|
[21] |
胜利油田地质处,胜利油田地调指挥部. 绕射扫描叠加[J]. 石油地球物理勘探, 1974, 9(5):1-40.
|
[21] |
Shengli Oilfield Geology Division, Shengli Oilfield Ground Investigation Command. Wrap-around scanning superimposed[J]. Oil Geophysical Prospecting, 1974, 9(5):1-40.
|
[22] |
王小龙, 张甲迪. 煤矿井下钻孔测斜原理及轨迹计算方法[J]. 煤炭技术, 2020, 39(1):72-75.
|
[22] |
Wang X L, Zhang J D. Borehole inclination measuring principle and borehole trajectory calculation method in underground coal mine[J]. Coal Technology, 2020, 39(1):72-75.
|
[23] |
王选琳, 刘柯, 郭召昌. 矿用钻孔地质雷达在打通一煤矿井下的试用验证[J]. 山东煤炭科技, 2020, 38(10):173-175.
|
[23] |
Wang X L, Liu K, Guo Z C. Test and verification of mine borehole geological radar in datong No.1 mine[J]. Shandong Coal Science and Technology, 2020, 38(10):173-175.
|
[1] |
GUO Jian-Hong, DU Ting, ZHANG Zhan-Song, XIAO Hang, QIN Rui-Bao, YU Jie, WANG Can. The coal structure identification method based on support vector machine and geophysical logging data[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 768-777. |
[2] |
ZANG Zi-Jing, WU Hai-Bo, DING Hai, ZHANG Ping-Song, DONG Shou-Hua. Prediction of coalbed methane content based on preferred seismic attributes and PSO-BP model[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1381-1386. |
|
|
|
|