|
|
Application of a comprehensive geophysical exploration methods in the exploration of geothermal resources in Yueliangwan, Binhai County |
WANG Jun-Cheng1,4( ), ZHAO Zhen-Guo2, GAO Shi-Yin1,4, LUO Chuan-Gen1,4, LI Lin1,4, XU Ming-Zuan1,4, LI Yong3, YUAN Guo-Jing3 |
1. Geological Exploration Technology Institute of Jiangsu Province, Nanjing 210049, China 2. China Communications Construction Company Highway Consultants Co., Ltd., Beijing 100088, China 3. Beijing Zhongke Diyuan Technology Co., Ltd., Beijing 100083, China 4. Jiangsu Engineering Research Center for Aeronautical Earth Exploration and Intelligent Sensing, Nanjing 210049, China |
|
|
Abstract This study explored the geothermal resources in Yueliangwan, Binhai County, Jiangsu Province using the controlled source audio-frequency magnetotellurics (CSAMT) method and the wide-field electromagnetic method. Through the auxiliary correction of near-field and transition-field curves, as well as the inversion based on the CSAMT data, this study obtained the electrical structure information of underground geothermal resources in the Binhai port. Meanwhile, this study acquired the information on the underground geometric structure using the microtremor exploration method. By comprehensively analyzing the interpretation results of three kinds of geophysical data, this study obtained the geothermal model of the study area and determined the locations of the anomalies. A geothermal well with a depth of 2 919 m was drilled in the study area, obtaining water yield of 2 171 m3/d with a water temperature of 51 ℃. The high consistency between the results from the comprehensive geophysical exploration and the geological and geothermal well data indicates that the comprehensive geophysical exploration method can improve the reliability of geothermal exploration results.
|
Received: 22 April 2022
Published: 27 April 2023
|
|
|
|
|
|
Regional geological structure map of the research area
|
地层 | 岩性 | 电阻率/(Ω·m) | 综合特征 | 波速特征/(m·s-1) | 标本测定 | 测井 | MT反演 | Q | 砂质黏土、粉砂、黏土、砂砾层 | 16 | 13.2 | 52.1 | 低阻层 | 900~1800 | N | 砂岩、泥岩 | 8.7 | 8.3 | 24.1 | 低阻层 | 1900~2400 | E2-3s | 砂岩、泥岩夹玄武岩 | 3.9 | 6.6 | 12.7 | 低阻层 | 2200~4200 | E2d | 砂岩、泥岩 | 6.1 | 11.6 | 低阻层 | E1f | 砂、泥岩夹玄武岩 | 3.9 | 5.8 | 低阻层 | E1t | 砂岩、泥岩 | 5.4 | 6.9 | 低阻层 | K2p | 粉砂岩 | 136 | 18.6 | 34 | 中低阻层 | 4000~4700 | P3d | 页岩、泥灰岩 | 388 | 68 | 99.8 | 中低阻层 | P2l | 页岩、粉砂质泥岩、岩屑砂岩 | 282 | 37 | 96 | 中低阻层 | P1g | 硅质岩、页岩、泥岩、粉砂岩 | 467 | 8 | 125 | 中低阻层 | P1q | 灰岩 | 4059 | 684 | 226 | 高阻层 | C2 | 灰岩 | 2538 | 529 | 153 | 高阻层 | 5000 | C1 | 灰岩、砂岩、泥岩 | 1950 | 517 | 165 | 高阻层 | D3w | 石英砂岩 | 381 | 362 | 113 | 中低阻层 | S2m | 石英砂岩 | 351 | 404 | 134 | 中低阻层 | S1f | 粉砂质泥岩 | 94 | 198 | 44 | 中低阻层 | O3S1g | 泥岩、粉砂质泥岩、泥质粉砂岩 | 193 | 95 | 28 | 中低阻层 | O3w | 泥岩 | 151 | | 26 | 中低阻层 | O1-2 | 灰岩、白云岩、泥灰岩 | 1134 | 330 | 115 | 高阻层 | 2-3 | 白云岩、白云质灰岩、灰岩 | 1504 | 462 | 143 | 高阻层 | 1m | 炭质泥页岩、灰岩、白云岩、硅质岩 | 507 | 163 | 高阻层 |
|
Statistics of formation rock resistivity parameters
|
|
Location map of survey line
|
|
Working diagram of CSAMT or WFEM
|
|
Curve comparison before and after correction
|
|
Comparison diagram before and after correction of L2
|
|
Denoising processing a—before denoising;b—after denoising
|
|
Static correction a—before correction;b—after correction
|
|
Observation diagram of quadruple circular array
|
|
Dispersion curve of point DK01
|
|
Comprehensive interpretation profile of CSAMT
|
|
Comprehensive interpretation profile of WFEM of L2
|
|
Interpretation Section of fretting detection
|
|
Conceptual diagram of prediction geothermal model of rearch area
|
地层 | 厚度/m | 岩性描述 | 第四系+新近系(Q+N) | 0~315 | 棕色、灰黄色粉砂质黏土为主,夹细砂、中粗砂 | 志留系(S) | 315~1116 | 灰白、灰绿色砂岩、长石石英细砂岩、粉砂岩为主,夹杂色、紫色泥岩,局部含硅质条带 | 奥陶系中—上统(O2-3) | 1116~2800 | 灰白色、灰色灰岩、细晶灰岩、泥灰岩为主,局部夹泥岩、页岩,裂隙较发育 | 奥陶系下统(O1) | 2800~2919 | 浅灰—灰白色白云质灰岩 |
|
Statistics of drilling conditions of geothermal well
|
|
The comparison diagram of comparative chart of CSAMT and borehole verification
|
[1] |
李麒麟, 李荣亮, 苏海伦, 等. 甘肃临泽县城区深部地热资源调查评价[J]. 物探与化探, 2020, 44(5):999-1008.
|
[1] |
Li Q L, Li R L, Su H L, et al. Investigation evaluation and method study of deep geothermal resources in Linze County,Gansu Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5):999-1008.
|
[2] |
胡宁, 张良红, 高海发. 综合物探方法在嘉兴地热勘查中的应用[J]. 物探与化探, 2011, 35(3):319-324.
|
[2] |
Hu N, Zhang L H, Gao H F. The application of integrated geophysical exploration to geothermal exploration in Jiaxing City[J]. Geophysical and Geochemical Exploration, 2011, 35(3):319-324.
|
[3] |
李丛, 张平, 代磊, 等. 综合物探在中深层地热勘查的应用研究[J]. 地球物理学进展, 2021, 36(2):611-617.
|
[3] |
Li C, Zhang P, Dai L, et al. Research on the application of comprehensive geophysical prospecting in middle-deep geothermal exploration[J]. Progress in Geophysics, 2021, 36(2) :611-617.
|
[4] |
刁天仁, 杜霏. 综合物探方法在安徽省岳西县溪沸地热勘探中的应用[J]. 工程地球物理学报, 2019, 16(6):815-821.
|
[4] |
Diao T R, Du F. Application of integrated geophysical exploration method to Xifei geothermal exploration in Yuexi County of Anhui Province[J]. Chinese Journal of Engineering Geophysics, 2019, 16(6):815-821.
|
[5] |
韩冀春, 李祥新, 于建文. 综合地物化方法在张家口北部地热资源调查中的应用[J]. 物探化探计算技术, 2018, 40(3):372-377.
|
[5] |
Han J C, Li X X, Yu J W. The application of comprehensive geophysical and geochemical method in geothermal resources investigation in northern Zhangjiakou[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(3):372-377.
|
[6] |
刘峰, 张洋洋, 朱鹏, 等. 苏北盆地滨海隆起月亮湾地热资源特征[J]. 地质学刊, 2021, 45(1):69-74.
|
[6] |
Liu F, Zhang Y Y, Zhu P, et al. Geothermal resource characteristics of Yueliangwan in Binhai Uplift of North Jiangsu Basin[J]. Journal of Geology, 2021, 45(1):69-74.
|
[7] |
汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
|
[7] |
Tang J T, He J S. Controllable source audio frequency magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
|
[8] |
王军成, 黄仕茂, 徐燕燕. 可控源音频大地电磁法(CSAMT)在茅山地热资源勘查中的应用[J]. 地质学刊, 2018, 42(1):161-166.
|
[8] |
Wang J C, Huang S M, Xu Y Y. The application of CSAMT in geothermal resource exploration in Mount Maoshan,Jiangsu Province[J]. Journal of Geology, 2018, 42(1):161-166.
|
[9] |
王刚, 王书民, 朱威, 等. AMT近源干扰压制方法[J]. 物探与化探, 2015, 39(2):371-375.
|
[9] |
Wang G, Wang S M, Zhu W, et al. Method of suppressing the adjacent source interference in AMT[J]. Geophysical and Geochemical Exploration, 2015, 39(2):371-375.
|
[10] |
赵晓鸣, 张恩力, 米晓利, 等. CSAMT 资料处理中的静校正问题[J]. 工程地球物理学报, 2008, 5(3):311-314.
|
[10] |
Zhao X M, Zhang E L, Mi X L, et al. Static correction of CSAMT date[J]. Chinese Journal of Engineering Geophysics, 2008, 5(3):311-314.
|
[11] |
栾晓东, 底青云, 雷达. 基于牛顿迭代法和遗传算法的CSAMT近场校正[J]. 地球物理学报, 2018, 61(10):4148-4159.
|
[11] |
Luan X D, Di Q Y, Lei D. Near-field correction of CSAMT data based on Newton iteration method and GA method[J]. Chinese Journal of Geophysics, 2018, 61(10):4148-4159.
|
[12] |
李帝铨, 汪振兴, 胡艳芳. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5):991-998.
|
[12] |
Li D Q, Wang Z X, Hu Y F. The application of WFEM to shale gas exploration in Wuling Mountain area:A case study of Tongzi area in northern Guizhou[J]. Geophysical and Geochemical Exploration, 2020, 44(5):991-998.
|
[13] |
危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5):1009-1018.
|
[13] |
Wei Z F, Chen H Y, Wu X Q. The application of wide field electromagnetic method to geothermal exploration in Yichun[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1009-1018.
|
[14] |
孟凡洋, 包书景, 陈科, 等. 基于广域电磁法的页岩气有利区预测——以渝东北巫山地区为例[J]. 物探与化探, 2018, 42(1):68-74.
|
[14] |
Meng F Y, Bao S J, Chen K, et al. The prediction of shale gas favorable area based on WFEM: A case study of Wushan area in northeast Chongqing[J]. Geophysical and Geochemical Exploration, 2018, 42(1):68-74.
|
[15] |
潘佳铁, 吴庆举, 李永华, 等. 华北地区瑞雷面波相速度层析成像[J]. 地球物理学报, 2011, 54(1):67-76.
|
[15] |
Pan J T, Wu Q J, Li Y H, et al. Rayleigh wave tomography of the phase velocity in north China[J]. Journal of Geophysics, 2011, 54(1):67-76.
|
[16] |
刘艳秋, 徐洪苗, 胡俊杰. 综合物探方法在水库堤坝隐患探测中的应用[J]. 工程地球物理学报, 2019, 16(4):546-551.
|
[16] |
Liu Y Q, Xu H M, Hu J J. Application of comprehensive geophysical exploration technique to detecting hidden defects of reservoir dams[J]. Chinese Journal of Engineering Geophysics, 2019, 16(4):546-551.
|
[17] |
徐佩芬, 李世豪, 凌甦群, 等. 利用SPAC法估算地壳S波速度结构[J]. 地球物理学报, 2013, 56(11):3846-3854.
|
[17] |
Xu P F, Li S H, Ling S Q, et al. Application of SPAC method to estimate the crustal S-wave velocity structure[J]. Journal of Geophysics, 2013, 56(11):3846-3854.
|
[18] |
徐佩芬, 侍文, 凌苏群, 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012, 55(6):2120-2128.
|
[18] |
Xu P F, Shi W, Ling S Q, et al. Mapping spherically weathered "Boulders" using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Journal of Geophysics, 2012, 55(6):2120-2128.
|
[19] |
张作宏, 王军成, 戴康明. CSAMT在沿海围垦区地热勘查中的应用[J]. 物探与化探, 2014, 38(4):680-683.
|
[19] |
Zhang Z H, Wang J C, Dai K M. The application of CSAMT method to geothermal exploration in coastal tideland reclamation areas[J]. Geophysical and Geochemical Exploration, 2014, 38(4):680-683.
|
[20] |
杜建国, 姚文江, 范迪富. 江苏地热资料类型及开发利用前景[J]. 地质学刊, 2012, 36(1):86-91.
|
[20] |
Du J G, Yao W J, Fan D F. Types of geothermal data and its development and utilization prospects in Jiangsu Province[J]. Journal of Geology, 2012, 36(1):86-91.
|
[21] |
汪名鹏, 刘彦华, 高鹤健. CSAMT在淮安金湖森林公园景区地热勘查中的应用[J]. 工程地球物理学报, 2020, 17(1):24-30.
|
[21] |
Wang M P, Liu Y H, Gao H J. Application of CSAMT to geothermal exploration in Jinhu forest park scenic area in Huai’an[J]. Chinese Journal of Engineering Geophysics, 2020, 17(1):24-30.
|
[22] |
陶土振. 郯庐断裂带及邻区地热场特征、温泉形成因素及气体组成[J]. 地质勘探, 2000, 20(6):42-47.
|
[22] |
Tao S Z. Geothermal field characteristics of Tanlu fault zone and its neighbouring regions,thermal spring genesis and its composition[J]. Geologic Examination, 2000, 20(6):42-47.
|
[1] |
Qi Zhao-Hua. Application of the wide-field electromagnetic method in hydrogeological exploration under the extremely-thick low-resistivity layer: A case study of a coal mine in the Huainan area, Anhui Province[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 700-706. |
[2] |
LI Qiao-Ling, ZHANG Hui, LEI Xiao-Dong, LI Chen, FANG Hao, GUAN Wei, HAN Yu-Da, ZHAO Xu-Chen. Analyses of internal structure of slopes using multi-channel transient surface wave exploration and microtremor survey[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 258-267. |
|
|
|
|