|
|
Technical methods for integrated geogas survey and their applications in the exploration of pegmatite-type rare metal deposits |
ZHOU Si-Chun1( ), WANG Deng-Hong2, LIU Xiao-Hui1, WANG Ya-Dong3, WEN Chun-Hua4, HU Bo1, WANG Guang-Xi1 |
1. Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China 2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China 3. Qinghai Geological Survey Institute, Xining 810008, China 4. Geological Survey Institute of Huan Province, Changsha 410083, China |
|
|
Abstract The integrated geogas survey is a prospecting technology that integrates geogas survey and X-ray fluorescence measurement for exploring concealed ores based on the prospecting needs of pegmatite-type rare metal deposits. This technology utilizes handheld X-ray fluorescence instruments for rapid measurement to capture secondary or primary halos on the surface, enabling the evaluation of the occurrence positions, strikes, and extension lengths of ore-hosting pegmatite veins on the surface. Moreover, it employs a dynamic geogas survey to capture deep mineralization information for evaluating the deep ore-bearing potential and extension depths of the pegmatite veins. This study demonstrated the main technical methods of the integrated prospecting technology and the application cases of ore prospecting supported by relevant projects in different geochemical landscape environments, in order to provide reference for the extension and application of this method and subsequent prospecting word in similar landscape areas.
|
Received: 05 July 2023
Published: 23 January 2024
|
|
|
|
|
|
Soil XRF spectrum in the background area of exploration line 16 in Renli mining area, Hunan Province (in order to clearly display the XRF spectral lines in different address ranges,different ordinate scales were used for the three segments of 0~311,311~371 and 371~2000)
|
|
XRF measurement comparison of soil samples with different raw grain sizes
|
测点号 | 元素 | 80~100目 原始粒度样/(cp·80s-1) | 加工为150目样*/ (cp·80s-1) | 相对误差/% | 最大相对误差/% | 平均相对误差/% | 132/XP3 | Nb | 3679 | 3350 | +9.36 | 9.36 | 6.32 | 134/XP3 | 3616 | 3879 | -7.01 | 154/XP3 | 3789 | 3688 | +2.70 | 190/XP3 | 3041 | 3237 | -6.20 | 132/XP3 | Ta | 837 | 794 | +5.27 | 10.03 | 8.18 | 134/XP3 | 900 | 995 | -10.03 | 154/XP3 | 1529 | 1400 | +8.81 | 190/XP3 | 936 | 1020 | -8.59 | 132/XP3 | Rb | 0.0108 | 0.0103 | +0.47 | 10.8 | 5.92 | 134/XP3 | 0.0105 | 0.0117 | -10.8 | 154/XP3 | 0.0239 | 0.0230 | +3.84 | 190/XP3 | 0.0195 | 0.0179 | +8.56 |
|
Particle size effects in X-fluorescence measurements affect experimental results
|
|
The XP8 line was compared using different XRF mapping parameters
|
|
Structural diagram of conventional dynamic geogas sampling device (a) and double trap series dynamic geogas sampling device with adjustable efficiency (b)
|
|
Comprehensive profile of ore body elements measured by geogas at the L2 survey line in the Kalu'an mining area
|
|
Extension inference diagram of vein 806
|
|
Comprehensive geogas survey profile of HH-02 line in Hongling survey area
|
|
Comprehensive geogas measurement profile and anomaly analysis map of PC survey line in Chuanziyuan mining area
|
|
Plane profile of PC survey line Nb element X fluorescence measurement in Chuanziyuan mining area
|
[1] |
王登红, 王成辉, 孙艳, 等. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 2017, 4(5):1-8.
|
[1] |
Wang D H, Wang C H, Sun Y, et al. New progresses and discussion on the survey and research of Li,Be,Ta ore deposits in China[J]. China Geological Survey, 2017, 4(5):1-8.
|
[2] |
周四春, 刘晓辉, 曾国强, 等. X荧光勘查技术及其在地质找矿中的应用[M]. 北京: 科学出版社, 2020.
|
[2] |
Zhou S C, Liu X H, Zeng G Q, et al. X-ray fluorescence exploration technology and its application in geological prospecting[M]. Beijing: Science Press, 2020.
|
[3] |
童纯菡, 李巨初. 地气测量寻找深部隐伏金矿及其机理研究[J]. 地球物理学报, 1999, 42(1):135-142.
|
[3] |
Tong C H, Li J C. Geogas prospecting and its mechanism in the search for deep-seated or concealed gold deposits[J]. Chinese Journal of Geophysics, 1999, 42(1):135-142.
|
[4] |
刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社,1987.
|
[4] |
Liu Y J, Cao L M. Introduction to elemental geochemistry[M]. Beijing: The Geological Publishing House,1987.
|
[5] |
谢学锦. 区域化探[M]. 北京: 地质出版社,1979.
|
[5] |
Xie X J. Regional geochemical exploration[M]. Beijing: The Geological Publishing House,1979.
|
[6] |
张龙. 伟晶岩稀有金属矿综合地气异常特征及勘查技术研究[D]. 成都: 成都理工大学, 2021.
|
[6] |
Zhang L. Study on comprehensive geogas anomaly characteristics and exploration technology of pegmatite rare metal ore[D]. Chengdu: Chengdu University of Technology, 2021.
|
[7] |
刘晓辉, 周四春, 童纯菡, 等. 提高地气探测灵敏度的方法[J]. 物探与化探, 2012, 36(6):1064-1067.
|
[7] |
Liu X H, Zhou S C, Tong C H, et al. The method and technique for improving the detection sensitivity of dynamic geogas survey[J]. Geophysical and Geochemical Exploration, 2012, 36(6):1064-1067.
|
[8] |
周四春, 刘晓辉, 胡波, 等. 南岭重点矿集区深部成矿信息的地气、放射性信息探测实验[M]. 北京: 中国原子能出版社, 2018.
|
[8] |
Zhou S C, Liu X H, Hu B, et al. Geogas and radioactivity detection technology and experiment of deep mineralization information in key mineral agglomeration area of Nanling[M]. BeiJing: China Atomic Energy Press, 2018.
|
[9] |
童纯菡, 李巨初, 葛良全, 等. 地气纳米物质的观测及其意义[J]. 中国科学:D辑, 1998, 28(2):153-156.
|
[9] |
Tong C H, Li J C, Ge L Q. et al. Observation and significance of geogas nanosubstances[J]. Science in China:Series D, 1998, 28(2):153-156.
|
[10] |
童纯菡. 元素迁移的模拟模型实验[J]. 核技术, 2001, 24(6):449-455.
|
[10] |
Tong C H. Imitative model experiment for elements transportation[J]. Nuclear Techniques, 2001, 24(6):449-455.
|
[11] |
周四春, 刘晓辉, 童纯菡, 等. 地气测量技术及在隐伏矿找矿中的应用研究[J]. 地质学报, 2014, 88(4):736-754.
|
[11] |
Zhou S C, Liu X H, Tong C H. et al. Application research of geogas survey in prospecting concealed ore[J]. Acta Geologica Sinica, 2014, 88(4):736-754.
|
[12] |
杨吉成, 周四春, 刘晓辉, 等. 卡鲁安伟晶岩锂矿的地气场特征及找矿意义[J]. 岩石矿物学杂志, 2019, 38(4):570-578.
|
[12] |
Yang J C, Zhou S C, Liu X H, et al. Geogas field characteristics of the Kalu’ an pegmatite lithium deposit and its prospecting significance[J]. Acta Petrologica Et Mineralogica, 2019, 38(4):570-578.
|
[1] |
GAN Xue-Jun, ZHOU Si-Chun, LIU Xiao-Hui, WANG Deng-Hong, WEN Chun-Hua. The application of an integrated geogas prospecting for exploring rare metal deposits in the periphery of the Renli mining area, southern Hunan Province[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1649-1656. |
[2] |
HAN Ruo-Pu, ZHOU Si-Chun, WANG Deng-Hong, LIU Xiao-Hui, CHEN Shou-Bo, WU Jian-Xin. Comprehensive geogas anomalies in the Hongling area of Hami, Xinjiang: Characteristics and implications for prospecting[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1657-1664. |
|
|
|
|