|
|
Applicability of an imaging method for ambient noise in coal mines based on triangular and linear arrays |
ZHANG Ze-Qi1,2, GAO Ji3( ), LIU Liang4, ZHA Hua-Sheng3, ZHANG Hai-Jiang3 |
1. Libi Coal Mine, China Coal Huajin Group, Jincheng Energy Co., Ltd., Jincheng 048200, China 2. School of Energy and Mining Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China 3. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China 4. The fifth Geological Brigade of Jiangxi Geological Bureau, Xinyu 338000, China |
|
|
Abstract Ambient noise surface wave imaging has been widely applied in the engineering exploration of large-scale regional structures and shallow parts. However, there are limited studies on the exploration of mineral resources at depths ranging from several hundreds of meters to one kilometer. The noise source utilized for exploration at this depth range is human environmental noise with frequencies from a few Hz to over ten Hz, varying greatly in time and space. To examine the applicability of ambient noise imaging in the exploration of coal mines, this study systematically analyzed noise source distribution and the adaptability of various array dispersion imaging schemes using experimental data from the Libi Coal Mine. As revealed by the results, the noise in the coal mine is dominated by that with frequencies below 2Hz at night and by that above 2Hz during the day. The noise frequency band (2~10 Hz) utilized for the No. 3 coal seam at a depth of 700m is primarily distributed in the southeast. In the case of simple frequencies and azimuths of the noise sources, a linear array in the noise source direction can obtain dispersion data with higher quality than a triangular array. Finally, by extracting dispersion data from a linear array in the NW direction, the 1D velocity structure below the linear array was obtained. By comparison with the lithology column of borehole ZK101 near the linear array, the 1D velocity structure, obtained through ambient noise imaging, corresponded well with the underground lithology. This result indicates that when fully considering noise distribution, the ambient noise imaging based on a linear array can yield reliable velocity structures for layers at depths less than 1 km in a coal mine.
|
Received: 15 February 2023
Published: 23 January 2024
|
|
|
|
|
|
Location of the research area(Libi coal mine)
|
|
Distribution of nodal seismometers for the array experiment
|
|
Array response functions for the triangle array at different frequencies for the ambient noise source
|
|
Distribution of noise source energy at different frequencies
|
|
Distribution of noise source azimuth and velocity at different frequencies
|
|
Dispersion spectral images of different arrays
|
|
Dispersion spectral images of NW line array with different acquisition time
|
|
Inversion results of dispersion data for NW line
|
|
Velocity model and the corresponding depth sensitivity kernels of surface wave phase velocity at different frequencies
|
|
Depth profile of lithologies along borehole ZK101 and the vs model derived
|
[1] |
张宪旭, 杨光明, 蔡文芮, 等. 煤层下部地层地震成像研究[J]. 煤田地质与勘探, 2015, 43(2):83-85.
|
[1] |
Zhang X X, Yang G M, Cai W R, et al. Research on seismic imaging of the lower part of coal seam[J]. Coal Geology & Exploration, 2015, 43(2),83-85.
|
[2] |
程建远, 王千遥, 朱书阶. 煤矿采区高密度三维地震采集参数讨论[J]. 煤田地质与勘探, 2020, 48(6):25-32.
|
[2] |
Cheng J Y, Wang Q Y, Zhu S J. Discussion on parameters of high density 3D seismic exploration acquisition in coal mining districts[J]. Coal Geology & Exploration, 2020, 48(6):25-32.
|
[3] |
蔡文芮. 基于三维地震和矿井槽波资料的工作面构造综合解释[J]. 陕西煤炭, 2022, 41(4):1-4.
|
[3] |
Cai W R. Comprehensive interpretation of working face structure based on 3D seismic and mine slot wave data[J]. Shaanxi Coal, 2022, 41(4):1-4.
|
[4] |
薛国强, 李海, 陈卫营, 等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报, 2021, 46 (1):77-85.
|
[4] |
Xue G Q, Li H, Chen W Y, et al. Research progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society, 2021, 46(1):77-85.
|
[5] |
徐佩芬, 李传金, 凌甦群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009, 52(7):1923-1930.
|
[5] |
Xu P F, Li C J, Ling S Q, et al. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 2009, 52(7):1923-1930.
|
[6] |
尹奇峰, 潘冬明, 于景邨, 等. 基于三维 RVSP 多孔联合技术煤矿采空区的探测[J]. 煤炭学报, 2014, 39(7):1338-1344.
|
[6] |
Yin Q F, Pan D M, Yu J C, et al. 3D RVSP multihole united exploration technology in coal mine goaf detection[J]. Journal of China Coal Society, 2014, 39(7):1338-1344.
|
[7] |
孙林. 高密度电阻率法与浅层地震在探测煤田采空区中的应用[J]. 物探与化探, 2012, 36(S1):88-91.
|
[7] |
Sun L. The application of high density Resistivity method and shallow seismic technique to detecting Goaf in the coal mine[J]. Geophysical and Geochemical Exploration, 2012, 36(S1):88-91.
|
[8] |
王强, 田野, 刘欢, 等. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2):531-536.
|
[8] |
Wang Q, Tian Y, Liu H, et al. Application of comprehensive geophysical prospecting in investigation of coal mine goaves[J]. Geophysical and Geochemical Exploration, 2022, 46(2):531-536.
|
[9] |
武欣, 潘冬明, 于景邨. 煤矿采空区地球物理探测方法综述[J]. 地球物理学进展, 2022, 37(3):1197-1206.
|
[9] |
Wu X, Pan D M, Yu J C. Review in the geophysical methods for coalmine goaf prospecting[J]. Progress in Geophysics, 2022, 37(3):1197-1206.
|
[10] |
夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8):2591-2605.
|
[10] |
Xia J H, Gao L L, Pan Y D, et al. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 2015, 58(8):2591-2605.
|
[11] |
赵玲云, 王伟涛, 王芳, 等. 噪声源的时空分布及其对噪声互相关函数的影响——以 ChinArray 二期数据为例[J]. 地球物理学报, 2021, 64(12):4327-4340.
|
[11] |
Zhao L Y, Wang W T, Wang F, et al. The distribution of noise source both in space and time and its influence on noise cross-correlation functions[J]. Chinese Journal of Geophysics, 2021, 64(12):4327-4340.
|
[12] |
Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715):1615-1618.
|
[13] |
Yao H J, van Der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I-Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2):732-744.
|
[14] |
Luo Y H, Yang Y J, Xu Y X, et al. On the limitations of interstation distances in ambient noise tomography[J]. Geophysical Journal International, 2015, 201(2):652-661.
|
[15] |
徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8):2618-2636.
|
[15] |
Xu Y X, Luo Y H. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics, 2015, 58(8):2618-2636.
|
[16] |
李娜, 何正勤, 叶太兰, 等. 天然源面波勘探台阵对比试验[J]. 地震学报, 2015, 37(2):323-334.
|
[16] |
Li N, He Z Q, Ye T L, et al. Test for comparison of array layout in natural source surface wave exploration[J]. Acta Seismologica Sinica, 2015, 37(2):323-334.
|
[17] |
Liu Y, Xia J H, Cheng F, et al. Pseudo-linear-array analysis of passive surface waves based on beamforming[J]. Geophysical Journal International, 2020, 221(1):640-650.
|
[18] |
Ku T, Palanidoss S, Zhang Y H, et al. Practical configured microtremor array measurements (MAMs) for the geological investigation of underground space[J]. Underground Space, 2021, 6(3):240-251.
|
[19] |
Aki K. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35:415-456.
|
[20] |
Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8):1408-1418.
|
[21] |
Cheng F, Xia J H, Luo Y H, et al. Multichannel analysis of passive surface waves based on crosscorrelations[J]. Geophysics, 2016, 81(5):EN57-EN66.
|
[22] |
Wang J, Wu G, Chen X. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):3708-3723.
|
[23] |
Xi C, Xia J H, Mi B, et al. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225(2):1271-1280.
|
[24] |
Okada H, Suto K. The microtremor survey method[M].Society of Exploration Geophysicists, 2003.
|
[25] |
Hu J, Zhang H J, Yu H Y. Accurate determination of P-wave backazimuth and slowness parameters by sparsity-constrained seismic array analysis[J]. Geophysical Journal International, 2019, 216(1):1-18.
|
[26] |
王奡, 罗银河, 吴树成, 等. 西准噶尔地区地震背景噪声源分析[J]. 地球物理学报, 2017, 60(4):1376-1388.
|
[26] |
Wang A, Luo Y H, Wu S C, et al. Source analysis of seismic ambient noise in the western Junggar area[J]. Chinese Journal of Geophysics, 2017, 60(4):1376-1388.
|
[27] |
Bensen G D, Ritzwoller M H, Barmin M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3):1239-1260.
|
[28] |
Foti S, Hollender F, Garofalo F, et al. Guidelines for the good practice of surface wave analysis:A product of the InterPACIFIC project[J]. Bulletin of Earthquake Engineering, 2018, 16(6):2367-2420.
|
[29] |
Herrmann R B. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6):1081-1088.
|
[30] |
Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the Seismological Society of America, 2005, 95(6):2081-2092.
|
[1] |
ZHANG Li-Zhen, SUN Cheng-Yu, WANG Zhi-Nong, LI Shi-Zhong, JIAO Jun-Feng, YAN Ting-Rong. First-arrival wave travel time-based tomography inversion with surface wave information as constraints[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1198-1205. |
[2] |
CHEN Shi, JIN Rong-Jie, LI Yan-Qing, LI Chong-Bo, HU Zun-Ping. Application of the natural source surface wave technique to the evaluation of the site of an urban planning area[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 264-271. |
|
|
|
|