|
|
Critical processing techniques for ocean bottom node data of the diapir fuzzy zone of the Dongfang 1-1 structure and their application |
ZHANG Min1(), DENG Dun2, LI San-Fu1, SHI Wen-Ying1, ZHANG Xing-Yan1, ZHI Ling1 |
1. Geophysical Research Institute,Geophysical Division,COSL,Zhanjiang 524057,China 2. Hainan Branch of CNOOC Ltd.,Haikou 570100,China |
|
|
Abstract The Dongfang 1-1 structure is situated in the northern part of the central mud diapir tectonic belt of the Yinggehai Basin on the northern continental shelf of the South China Sea.The Dongfang 1-1 gas field is the first uncompartmentalized shallow gas field discovered in the Yinggehai Basin.Despite abundant oil and gas reserves in this region, the imaging of the diapir fuzzy zone has been a critical factor restricting oil and gas exploration in this region.The original streamer-based seismic data,through multiple rounds of multi-company reprocessing,still failed to effectively image the diapir fuzzy zone.Therefore,the second acquisition of three-dimensional ocean bottom node(OBN) seismic data was conducted in this region.According to the geological conditions and the characteristics of OBN data in this region,this study proposed several critical processing techniques,including OBN preprocessing,multi-component joint shear-wave noise suppression,wavelet-domain dual-sensor summation,and full-waveform-inversion(FWI) high-precision velocity modeling.These techniques effectively improved the imaging of shallow fault structures and middle and deep diapir fuzzy zones,thus providing reliable fundamental data for the subsequent target evaluation.
|
Received: 03 March 2023
Published: 23 January 2024
|
|
|
|
|
震源参数 | 参数值 | 接收参数 | 参数值 | 属性参数 | 参数值 | 震源个数 | 2 | 接收点距/m | 50 | 采集方向 | 东西 | 炮间距/m | 50 | 接收线距/m | 200 | 覆盖次数/次 | 800 | 炮点深度/m | 7 | 节点深度/m | 60~75 | 采集模式 | Swath | 炮线距/m | 50 | 电缆长度/m | 16000 | | | 震源容量/cuin | 4090 | 单排列道数/道 | 8×322 | | |
|
Secondary 3D OBN acquisition parameters of Dongfang 1-1 structure
|
|
The Node secondary positioning quality control a—statistical of node positioning position difference before and after cable laying;b—after linear correction of direct wave
|
|
Analysis of shear wave noise characteristics and effect of conventional suppression method a—z component common receiver gathers;b—z component common shot gathers;c—the cross-spread arrangement schematic diagram;d—the cross-spread receiver gather;e—common receiver gathers before shear wave noise suppression;f—common receiver gathers after shear wave noise suppression;g—common shot gathers before shear wave noise suppression;h—common shot gathers after shear wave noise suppression
|
|
Effect analysis before and after pre-processing a—linear NMO correction of direct wave before preprocessing;b—linear NMO correction of direct wave after preprocessing;c—stacked section before preprocessing;d—stacked section after preprocessing
|
|
Principle of shear wave noise suppression and predicted noise mode a—far offset z component and x component left and right contrast diagram;b—far offset z component and y component left and right contrast diagram;c—near offset z component and x component left and right contrast diagram;d—near offset z component and y component left and right contrast diagram;e—z component common reciever gathers;f—the z component shear wave noise model predicted by this method
|
|
Analysis of transverse wave suppression effect a—P component stack section;b—the stack section before z component shear wave noise suppression;c—z component conventional method superposition profile after shear wave noise suppression;d—z component superposition profile after shear wave noise suppression is used in this method;e—spectrum analysis curves before and after denoising with different methods;f—S/N ratio analysis curves before and after denoising by different methods
|
|
Schematic diagram of double check merging
|
|
Effect analysis of dual-sensor instrument response a—hydrophone instrument response;b—geophone instrument response;c—the phase spectrum of hydrophone and geophone instrument response;d—the frequency spectrum of hydrophone instrument response;e—the frequency spectrum of geophone instrument response;f—the matching operator;g—the left and right comparison diagram of hydrophone and geophone before instrument response correction;h—the left and right comparison diagram of hydrophone and geophone after instrument response correction
|
|
Effect analysis of dual-sensor summation in Wavelet Domain a—P component stacking profile before dual-sensor summaton;b—the primary wave superposition profile after dual-sensor summation;c—the receiver ghost wave stacking profile after dual-sensor summation;d—P component cdp gather before dual-sensor summation;e—the primary wave cdp gathers after cross-ghosting method;f—the primary wave cdp gathers after this method
|
|
The frequency spectrum of dual-sensor and the frequency spectrum of the different dual-sensor summation
|
|
Effect analysis of FWI velocity inversion and vertical velocity component and high precision grid tomography inversion a—initial velocity model;b—the main frequency 4.5 Hz refracted wave FWI;c—the main frequency 6 Hz refracted wave FWI;d—the main frequency 8 Hz refracted wave FWI;e—the main frequency 10 Hz refracted wave FWI;f—the main frequency 12 Hz refracted wave FWI;g—initial velocity model;h—final velocity model
|
|
The effect analysis of new and old data imaging profile a—towed cable old data prestack depth migration imaging profile;b—OBN new data prestack depth migration imaging profile
|
|
The effect analysis of variance body attribute a—towed cable old data 1 300 m variance volume slice;b—OBN new data 1 300 m variance volume slice
|
[1] |
谢培勇. 海上浅层大气田——DF1-1气田[J]. 天然气工业, 1999, 19(1):43-46.
|
[1] |
Xie P Y. Marine shallow giant gas field:DF1-1 gas field[J]. Natural Gas Industry, 1999, 19(1):43-46.
|
[2] |
刘爱群, 范彩伟, 蔡军, 等. 高温高压盆地东方区黄流组三维压力建模技术[J]. 物探与化探, 2016, 40(2):423-428.
|
[2] |
Liu A Q, Fan C W, Cai J, et al. The three-dimensional pressure modeling technology for Huangliu Formation of Dongfang area in the HTHP basin[J]. Geophysical and Geochemical Exploration, 2016, 40(2):423-428.
|
[3] |
岳绍飞, 张辉, 王庆帅, 等. 莺歌海盆地东方A气田莺歌海组二段沉积新认识:海底扇浊积席状砂[J]. 海相油气地质, 2017, 22(4):11-18.
|
[3] |
Yue S F, Zhang H, Wang Q S, et al. Turbidite sand:A new view on sedimentary facies of Pliocene Zhujiang member-2 in DF-A gas field,Yinggehai Basin[J]. Marine Origin Petroleum, 2017, 22(4):11-18.
|
[4] |
刘铁树, 王俊兰. 莺歌海盆地演化及天然气分布[J]. 中国海上油气地质, 1994, 8(6):394-400.
|
[4] |
Liu T S, Wang J L. Basin evolution and natural gas distribution in Yinggehai Basin[J]. China offshore Oil and Gas(Geology), 1994, 8(6):394-400.
|
[5] |
于俊峰, 刘全稳, 王立锋, 等. 莺歌海盆地东方13气田气水分布模式[J]. 海相油气地质, 2020, 25(2):132-140.
|
[5] |
Yu J F, Liu Q W, Wang L F, et al. Gas-water distribution models of Dongfang 13 gas field Yinggehai Basin[J]. Marine Origin Petroleum Geology, 2020, 25(2):132-140.
|
[6] |
熊小峰, 徐新德, 甘军, 等. 莺歌海盆地中央底辟带天然气差异分布与运聚成藏特征莺歌海盆地东方13气田气水分布模式[J]. 海洋地质前沿, 2017, 33(7):24-31.
|
[6] |
Xiong X F, Xu X D, Gan J, et al. Differentiated gas distribution,migration and accumulation in the central diapir belt of the Yinggehai basin[J]. Marine Geology Frontiers, 2017, 33(7):24-31.
|
[7] |
李斌, 冯奇坤, 张异彪, 等. 海上OBC-OBN技术发展与关键问题[J]. 物探与化探, 2019, 43(6):1277-1284.
|
[7] |
Li B, Feng Q K, Zhang Y B, et al. Summary of development and key issues of offshore OBC-OBN technology[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1277-1284.
|
[8] |
Rodriguez-Suarez C, Stewart R R, Margravé G F. Where does S-wave energy on OBC recordings come from?[C]// SEG Technical Program Expanded Abstracts 2000,Society of Exploration Geophysicists, 2000:1170-1173.
|
[9] |
Paffenholz J, Shurtleff R, Hays D, et al. Shear wave noise on OBS Vz data part I evidence from field data[C]// Vienna:68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006,European Association of Geoscientists & Engineers, 2006:625-630.
|
[10] |
周家雄, 马光克, 隋波, 等. 基于Curvelet域多分量阈值控制的OBC垂直分量横波噪声压制方法[J]. 中国海上油气, 2020, 32(3):51-58.
|
[10] |
Zhou J X, Ma G K, Sui B, et al. Shear wave noise suppression method on OBC vertical component based on multi-component threshold control in Curvelet domain[J]. China Offshore Oil and Gas, 2020, 32(3):51-58.
|
[11] |
史文英, 方中于, 李列, 等. 海底电缆陆检噪音衰减方法及其在乌石地区的应用[J]. 世界地质, 2015, 34(2):516-523.
|
[11] |
Shi W Y, Fang Z Y, Li L, et al. Geophone noise and attenuation of ocean bottom cable and its application in Wushi area[J]. Global Geology, 2015, 34(2):516-523.
|
[12] |
范宝仓, 陈文贵, 王海昆, 等. 海底电缆Z分量横波噪音特征分析及衰减方法[J]. 中国海上油气, 2017, 29(3):31-39.
|
[12] |
Fan B C, Chen W G, Wang H K, et al. Characteristic analysis and attenuation of OBC geophone Z component sheear wave noise[J]. China Offshore Oil and Gas, 2017, 29(3):31-39.
|
[13] |
Yang X M, Wang Y C, et al. A processing workflow for ocean bottom cable dual-sensor acquisition data:A case of 3D seismic data in Bohai Bay[J]. Open Journal of Geology, 2019, 9(1):67-74.
|
[14] |
Hugonnet P, Boelle J L, Herrmann P, et al. PZ Summation of 3D WAZ OBS Receiver Gathers[C]// Vienna:73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011,European Association of Geoscientists & Engineers, 2011:23-26.
|
[15] |
Richard B, ea al. Hydrophone-Geophone deghosting of OBC data in the τ-p domain[J]. EAGE 60th Conference & Exhibition Leipzig Germany, 1998, 4(2):208-209.
|
[16] |
朱金强, 张明强, 焦叙明, 等. 海上宽方位地震资料多次波压制技术研究与应用[J]. 工程地球物理学报, 2022, 19(3):368-375.
|
[16] |
Zhu J Q, Zhang M Q, Jiao X M, et al. Research and application of multiple suppression techniques for marine wide-azimuth data[J]. Chinese Journal of Engineering Geophysics, 2022, 19(3):368-375.
|
[17] |
周滨, 龚旭东, 高梦晗, 等. 海底电缆交叉鬼波化双检合并技术改进及应用[J]. 中国海上油气, 2015, 27(1):49-52,67.
|
[17] |
Zhou B, Gong X D, Gao M H, et al. An improvement of the dual-sensor summation technique for corss-ghosting from OBC and its application[J]. China Offshore Oil and Gas, 2015, 27(1):49-52,67.
|
[18] |
苗永康. 叠前地震全波形反演实际应用的关键影响因素[J]. 物探与化探, 2016, 40(5):947-954.
|
[18] |
Miao Y K. Key factors affecting the practical application of prestack seismic waveform inversion[J]. Geophysical and Geochemical Exploration, 2016, 40(5):947-954.
|
[19] |
国运东. 基于组合震源编码的多尺度全波形反演方法[J]. 物探与化探, 2022, 46(3):729-736.
|
[19] |
Guo Y D. Multi-scale full waveform inversion method using combined source encoding[J]. Geophysical and Geochemical Exploration, 2022, 46(3):729-736.
|
[20] |
王庆, 张建中, 黄忠来. 时间域地震全波形反演方法进展[J]. 地球物理学进展, 2015, 30(6):2797-2806.
|
[20] |
Wang Q, Zhang J Z, Huang Z L. Progress in the time-domain full waveform inversion[J]. Progress in Geophysics, 2015, 30(6):2797-2806.
|
[21] |
周斯琛, 李振春, 张敏, 等. 基于截断牛顿法的频率域全波形反演方法[J]. 物探与化探, 2017, 41(1):147-152.
|
[21] |
Zhou S C, Li Z C, Zhang M, et al. Full waveform inversion in frequency domain using the truncated Newton method[J]. Geophysical and Geochemical Exploration, 2017, 41(1):147-152.
|
[22] |
李黎, 沈水荣, 吴意明, 等. 全波形反演与断控层析反演联合速度建模——以南海东部A油田为例[J]. 中国海上油气, 2020, 32(5):107-113.
|
[22] |
Li L, Shen S R, Wu Y M, et al. Velocity modeling combining full waveform inversion with fault controlled tomographic inversion:A case study of A oilfield in the eastern South China Sea[J]. China Offshore Oil and Gas, 2020, 32(5):107-113.
|
[23] |
王忠成, 周华伟, 童思友, 等. 深水海底节点二次定位方法[J]. 石油地球物理勘探, 2020, 55(2):242-247,227.
|
[23] |
Wang Z C, Zhou H W, Tong S Y, et al. Secondary positioning of deep ocean bottom nodes[J]. Oil Geophysical Prospecting, 2020, 55(2):242-247,227.
|
[24] |
邓元军, 杨志国, 张建峰, 等. 新的声波二次定位技术在海底电缆地震勘探的应用[J]. 地球物理学进展, 2013, 28(5):2718-2724.
|
[24] |
Deng Y J, Yang Z G, Zhang J F, et al. A new acoustic secondary positioning in the OBC seismic prospecting[J]. Progress in Geophysics, 2013, 28(5):2718-2724.
|
[25] |
胡雨, 谢凯, 阮宁君, 等. 基于三维曲波变换的弱信号恢复方法研究[J]. 计算机工程与应用, 2016, 52(18):199-202.
|
[25] |
Hu Y, Xie K, Ruan N J, et al. Method of weak signal recovery based on 3D curvelet transform[J]. Computer Engineering and Applications, 2016, 52(18):199-202.
|
[26] |
张之涵, 孙成禹, 姚永强, 等. 三维曲波变换在地震资料去噪处理中的应用研究[J]. 石油物探, 2014, 53(4):421-430.
|
[26] |
Zhang Z H, Sun C Y, Yao Y Q, et al. Research on the application of 3D curvelet transform to seismic data denoising[J]. Geophysical Prospecting for Petroleum, 2014, 53(4):421-430.
|
[27] |
曹静杰, 杨志权, 杨勇, 等. 一种基于曲波变换的自适应地震随机噪声消除方法[J]. 石油物探, 2018, 57(1):72-78,121.
|
[27] |
Cao J J, Yang Z Q, Yang Y, et al. An adaptive seismic random noise elimination method based on Curvelet transform[J]. Geophysical Prospecting for Petroleum, 2018, 57(1):72-78,121.
|
[28] |
汪金菊, 李青, 徐小红, 等. 基于分数阶小波域GSM模型的地震信号随机噪声压制方法[J]. 地球物理学报, 2018, 61(7):2989-2997.
|
[28] |
Wang J J, Li Q, Xu X H, et al. Random noise attenuation method of seismic signal based on the fractional order wavelet domain GSM model[J]. Chinese Journal of Geophysics, 2018, 61(7):2989-2997.
|
[29] |
张健男, 但志伟, 孙雷鸣, 等. 全波形反演技术在深海地震成像中的研究及应用[J]. 海洋工程装备与技术, 2019, 6(s1):250-254.
|
[29] |
Zhang J N, Dan Z W, Sun L M, et al. Research and application of full waveform inversion of the deep sea seismic imaging[J]. Ocean Engineering Equipment and Technology, 2019, 6(s1):250-254.
|
[1] |
SHI Quan-Dang, KONG Ling-Ye, WU Chao, DING Yan-Xue, LIU Ze-Min, YU Xue, WANG Jiang. Application of wave impedance inversion technology based on wavelet edge analysis and combined well-seismic modeling in reservoir prediction of Luliang uplift zone[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1425-1432. |
[2] |
FU Yu, AI Han-Bing, YAO Zhen-An, MEI Zhu-Xu, SU Ke-Jia. Inversion of the Rayleigh wave dispersion curves based on the sine-cosine algorithm[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1467-1478. |
|
|
|
|