|
|
Property analysis and application of multi-scale wavelet decomposition of gravity potential field |
MENG Qing-Kui1,2( ), ZHANG Wen-Zhi2, GAO Wei2, SHU Qing1,2, LI Rui2, XU Guang-Jing2, ZHANG Kai-Song2 |
1. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China 2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China |
|
|
Abstract Multi-scale wavelet decomposition is one of the common methods for gravity potential field separation. The biggest advantage is that it breaks through the traditional concept of dichotomy gravity anomalies and achieves the multiple decomposition of gravity anomalies. However, no systematic study has been carried out on the limitations and properties of the multi-scale wavelet decomposition. To systematically investigate the multi-scale wavelet decomposition and provide guidance for its practical application, this study, starting from the definition of multi-scale wavelet decomposition of gravity potential field based on profiles and grids, expounded three important properties such as the criterion that low-order wavelet keeps details invariant. Then, it analyzed the definition and properties of multi-scale wavelet by designing simple and complex theoretical models. Afterward, this study compared the multi-scale wavelet decomposition with the interpolation cutting method using field data. The results show that multi-scale wavelet decomposition can achieve multi-layer separation of gravity potential field and estimate the burial depths of source bodies. In addition, the multi-scale wavelet decomposition can provide some ideas for solving the limitations pointed out in this study, such as abnormal scale aliasing and difficulty with the determination of scale coefficients. The above basic research can provide a certain degree of references for the processing and interpretation of gravitational potential field data.
|
Received: 07 December 2020
Published: 17 August 2022
|
|
|
|
|
编号 | 左边界 /km | 右边界 /km | 前边界 /km | 后边界 /km | 上边界 /km | 下边界 /km | 剩余密度 /(g·cm-3) | 备注 | 1 | 30 | 35 | 5 | 10 | 2.5 | 7.5 | 0.30 | 浅部 | 2 | 25 | 30 | 15 | 20 | 2.5 | 7.5 | 0.30 | 浅部 | 3 | 10 | 15 | 20 | 25 | 2.5 | 7.5 | 0.35 | 浅部 | 4 | 10 | 30 | 10 | 30 | 20 | 30 | 0.30 | 深部 |
|
Parameters of simple models
|
编号 | 左边界 /km | 右边界 /km | 前边界 /km | 后边界 /km | 上边界 /km | 下边界 /km | 剩余密度 /(g·cm-3) | 备注 | 1 | 10.2 | 11.9 | 68.8 | 69.5 | 0.2 | 1.2 | 0.15 | 第1层 | 2 | 64.4 | 65.3 | 70.8 | 71.8 | 0.2 | 1.2 | 0.15 | 第1层 | 3 | 16.1 | 56.0 | 8.7 | 9.5 | 0.2 | 1.2 | 0.15 | 第1层 | 4 | 34.1 | 36.1 | 69.8 | 72.5 | 3.0 | 5.0 | 0.40 | 第2层 | 5 | 38.1 | 40.4 | 45.8 | 48.3 | 3.0 | 5.0 | 0.40 | 第2层 | 6 | 67.9 | 71.2 | 32.7 | 61.7 | 6.5 | 9.5 | 0.45 | 第3层 | 7 | 11.9 | 15.9 | 27.4 | 63.7 | 14.0 | 18.0 | 0.60 | 第4层 |
|
Parameters of complex models
|
|
Result of simple models with 5 level wavelet decomposition a—theoretical gravity anomaly;b~f—1st~5th order approximation of wavelet decomposition;g~k—1st~5th order detail of wavelet decomposition
|
|
Comparison between theoretical anomaly and wavelet decomposition anomaly a—theoretical gravity anomaly;b—theoretical regional anomaly;c—theoretical local anomaly;d—wavelet recovery anomaly; e—wavelet regional anomaly;f—wavelet local anomaly
|
|
Comparison between theoretical anomaly of complex models and wavelet decomposition anomaly a—theoretical gravity anomaly;b~e—gravity anomaly of 1st~4th layer model;f~i—1st~4th order detail of wavelet decomposition
|
|
Local (left) and regional (right) gravity anomalies in the Nansha Islands (partial)
|
[1] |
Nettleton L L. Regionals,residuals,and structures[J]. Geophysics, 1954, 19(1):1-22.
|
[2] |
Agocs W B. Least-squares residual anomaly determiration[J]. Geoghysics, 1951, 16(4):686-696.
|
[3] |
Oldham C H G, Sutherland D B. Orthogonal polynomials: Their use in estimating the regional effect[J]. Geophysics, 1955, 20(2):295-306.
|
[4] |
刘金钊, 朱绿涛, 张双喜, 等. 基于改进的2D多项式拟合及加权迭代算法的重力异常垂向分离[J]. 大地测量与地球动力学, 2018, 38(9): 897-902,907.
|
[4] |
Liu J Z, Zhu L T, Zhang S X, et al. Gravity anomalies vertical separation at different depths by an improved 2D polynomial fitting and weighting iterative algorithm[J]. Journal of Geodesy and Geodynamics, 2018, 38(9): 897-902,907.
|
[5] |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society, 1998, 454(1971):903-995.
|
[6] |
Mickus K L, Aiken C L V, Kennedy W D. Regional-residual gravity anomaly separation using the minimum-curvature technique[J]. Geophysics, 1991, 56(2):279-283.
|
[7] |
纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 58(3):1042-1058.
|
[7] |
Ji X L, Wang W Y, Qiu Z Y. The research to the minimum curvature technique for potential field data separation[J]. Chinese Journal of Geophysics, 2015, 58(3):1042-1058.
|
[8] |
纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法参数选择试验研究[J]. 地球物理学进展, 2019, 34(4):1441-1452.
|
[8] |
Ji X L, Wang W Y, Qiu Z Y. The parameter choose experimental research to the minimum curvature technique potential field data separation method[J]. Progress in Geophysics, 2019, 34(4):1441-1452.
|
[9] |
程方道, 刘东甲, 姚汝信. 划分重力区域场与局部场的研究[J]. 物探化探计算技术, 1987, 9(1):1-9.
|
[9] |
Cheng F D, Liu D J, Yao R X. A study on the identification of regional and local gravity fields[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1987, 9(1):1-9.
|
[10] |
文百红, 程方道. 用于划分磁异常的新方法—插值切割法[J]. 中南矿冶学院学报, 1990, 21(3):229-235.
|
[10] |
Wen B H, Cheng F D. A new interpolating cut method for identifying regional and local fields of magnetic anomaly[J]. J.Cent-South Inst.Min.Metall, 1990, 21(3):229-235.
|
[11] |
刘东甲, 程方道. 划分重力区域场与局部场的多次切割法[J]. 物探化探计算技术, 1997, 19(1):32-36.
|
[11] |
Liu D J, Chen F D. A multiple-cut method for identification of regional and local gravity fields[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1997, 19(1):32-36.
|
[12] |
徐世浙, 张研, 文百红, 等. 切割法在陆东地区磁异常解释中的应用[J]. 石油物探, 2006, 45(3):316-318.
|
[12] |
Xu S Z, Zhang Y, Wen B H, et al. Application of cut method in magnetic anomaly interpretation in LuDong area[J]. Geophysical Prospecting for Petroleum, 2006, 45(3):316-318.
|
[13] |
葛粲, 任升莲, 李永东, 等. 重力异常分层分离方法改进及应用:以安徽五河地区为例[J]. 地球物理学报, 2017, 60 (12) : 4826-4839.
|
[13] |
Ge C, Ren S L, Li Y D, et al. Improvement and application of the layered separation method for gravity anomalies: An example of the wuhe area,Anhui Province[J]. Chinese Journal of Geophysics, 2017, 60(12):4826-4839.
|
[14] |
于长春, 熊盛青, 郭志宏, 等. 改进的非线性滤波方法在中高山地区的应用[J]. 物探与化探, 2003, 27(1):39-42,62.
|
[14] |
Yu C C, Xiong S Q, Guo Z H, et al. The improved nonlinear filtering mthod and its application in middle and high mountain areas[J]. Geophysical and Geochemical Exploration, 2003, 27(1):39-42,62.
|
[15] |
郭志宏, 刘浩军, 熊盛青. 平面网格位场数据的空间域非线性曲率滤波方法[J]. 地球物理学进展, 2003, 18(1):134-137.
|
[15] |
Guo Z H, Liu H J, Xiong S Q. The nonlinear curvature filtering technique of plane potential grid data in space domain[J]. Progress in Geophysics, 2003, 18(1):134-137.
|
[16] |
Kaftan I, Salk M, Suri C. Application of the finite element method to gravity data case study: Western Turkey[J]. Journal of Geodynamics, 2005, 39(5):431-443.
|
[17] |
Kannan S, Mallick K. Accurate regional-residual separation by finite element approach, Bouguer gravity of Precambrian mineral prospect in northwestern Ontario[J]. First Break, 2003, 21:39-42.
|
[18] |
Mallick K, Sharma K K. A finite element method for computation of the regional gravity anomaly for computation of the regional gravity anomaly[J]. Geophysics, 1999, 64(2):461-469.
|
[19] |
Mallick K, Sarma G S. Finite element formulation for seismic wave propagation in oil-bearing geological formations[C]// International Symposium on Mathematical Modeling and Scientific Computation, 1992.
|
[20] |
Sarma G S, Gadhinglajkar V R, Mallick K. Finite element simulation of bright-spot structures[J]. Journal of Association Exploration Geophysics, 1993, 14(2):43-47.
|
[21] |
Agarwal B N P, Shalivahan S. A fortran program to implement the method of finite elements to compute regional and residual anomalies from gravity data[J]. Computers & Geosciences, 2010, 36(7):848-852.
|
[22] |
肖锋, 孟令顺. 用有限元插值法计算区域重力异常[J]. 吉林大学学报:地球科学版, 2006, 36(S):5-8.
|
[22] |
Xiao F, Meng L S. Use finite element method for computation of the regional gravity anomaly[J]. Journal of Jilin University:Earth Science Edition, 2006, 36(S):5-8.
|
[23] |
Yu Y Y, Huang G X. Application of kalman filtering theory to regional-residual separation of gravity or magnetic anomalies[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1991, 13(3):220-228.
|
[24] |
许家姝, 孟令顺, 刘银萍. 卡尔曼滤波在位场分离中的应用[J]. 科学技术与工程, 2010, 10(2):394-399.
|
[24] |
Xu J S, Meng L S, Liu Y P. Application of kalman filtering in the separation of potential field[J]. Science Technology and Engineering, 2010, 10(2):394-399.
|
[25] |
Pawlowski R S, Hansen R O. Gravity anomaly separation by Wiener filtering[J]. Geophysics, 1990, 55 (5):539-548.
|
[26] |
Spector A, Grant F S. Statistical model for interpreting aeromagnetic data[J]. Geophysics, 1970, 35(2):293-302.
|
[27] |
Syberg F J R. A Fourier method for the regional residual problem of potential fields[J]. Geophysical Prospecting, 1972, 20(1):47-75.
|
[28] |
Charaborty L B. Mapping of crustal discontinuities by wavelength filtering of gravity field[J]. Geophysical Prospecting, 1992, 40(7):801-822.
|
[29] |
王明, 王林飞, 何辉. 匹配滤波技术分离重力场源[J]. 物探与化探, 2015, 39 (S1) :126-132.
|
[29] |
Wang M, Wang L F, He H. The application of the matched filtering technology to the separation of gravity field sources[J]. Geophysical and Geochemical Exploration, 2015, 39(S1) : 126-132.
|
[30] |
侯遵泽, 杨文采. 中国重力异常的小波变换与多尺度分析[J]. 地球物理学报, 1997, 40(1) : 85-95.
|
[30] |
Hou Z Z, Yang W C. Wavelet transform and multi-scale analysis on gravity anomalies of China[J]. Chinese Journal of Geophysics, 1997, 40(1) : 85-95.
|
[31] |
杨文采, 施志群, 侯遵泽, 等. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 2001, 44(4):534-541.
|
[31] |
Yang W C, Shi Z Q, Hou Z Z, et al. Discrete wavelet transform for multiple decomposition of gravity anomalies[J]. Chinese Journal of Geophysics, 2001, 44(4):534-541.
|
[32] |
高德章, 侯遵泽, 唐建. 东海及邻区重力异常多尺度分解[J]. 地球物理学报, 2000, 43(6):842-849.
|
[32] |
Gao D Z, Hou Z Z, Tang J. Multiscale analysis of gravity anomalies one east China sea and adjacent regions[J]. Chinese Journal of Geophysics, 2000, 43(6):842-849.
|
[33] |
侯遵泽, 杨文采. 塔里木盆地多尺度重力场反演与密度结构[J]. 中国科学, 2011, 41(1):29-39.
|
[33] |
Hou Z Z, Yang W C. Multi-scale gravity field inversion and density structure in Tarim Basin[J]. Science China, 2011, 41(1):29-39.
|
[34] |
杨文采, 孙艳云, 侯遵泽, 等. 用于区域重力场定量解释的、多尺度刻痕分析方法[J]. 地球物理学报, 2015, 58(2):520-53.
|
[34] |
Yang W C, Sun Y Y, Hou Z Z, et al. An multi-scale scratch analysis method for quantitative interpretation of regional gravity fields[J]. Chinese Journal of Geophysics, 2015, 58(2) : 520-531.
|
[35] |
杨长保, 刘津怿, 吴燕冈, 等. 二维多尺度离散小波/小波包分析进行重力区域场和局部异常分离的模型分析[J]. 地球物理学进展, 2010, 25(3):1007-1014.
|
[35] |
Yang C B, Liu J Y, Wu Y G, et al. Two-dimensional multi-scale discrete wavelet/wavelet packet analysis for models of regional and residual gravity anomaly separation[J]. Progress in Geophysics, 2010, 25(3):1007-1014.
|
[36] |
Banerjee B, Das Gupta S P. Gravitational attraction of a rectangular parallelepiped. Geophysics, 1977, 42(5):1053-1055.
|
[37] |
万荣胜, 张伙带, 陈洁. 插值切割法在南海重力数据处理中的应用[J]. 海洋地质与第四纪地质, 2017, 39(1):173-183.
|
[37] |
Wang S R, Zhang H D, Chen J. Application of interpolation cut method to gravity data processing in South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 39(1):173-183.
|
|
|
|