|
|
Application of radioactive prospecting in exploration of rare metal minerals: A case study of a uranium anomaly in the Nancha area |
Wang Rui( ), Li Zhan-Long( ), Ma Tao |
Fifth Geological Exploration Institute of Heilongjiang Province, Haerbin 150090, China |
|
|
Abstract The mineralization of deposits of rare metals such as tantalum and niobium in China is mostly related to granite pegmatite. The enrichment of rare metals in these deposits is accompanied by the formation of radioactive minerals, such as albite, monazite, and high-grade uranium, and these deposits have paragenetic and associated minerals uranium deposits. Therefore, radioactive prospecting has become the most convenient and effective method to explore deposits of rare metals such as REEs, Nb, and Ta. Based on the close correlation between mineralization and radioactivity of rare earth minerals, this study fully investigated the parameter characteristics of the surveyed energy spectrum data through the combination of airborne radioactivity measurement and ground gamma spectrometry measurement to determine prospecting indicators. A new niobium-tantalum-rubidium polymetallic mineralized point was discovered in the Nancha area, Yichun City using the radioactive prospecting method, which was thus proven effective.
|
Received: 02 November 2020
Published: 17 August 2022
|
|
Corresponding Authors:
Li Zhan-Long
E-mail: 441235080@qq.com;909953001@qq.com
|
|
|
|
|
Geological and Uranium anomaly map of Tangwang river in Nancha district 1—Quaternary low-river floodplain deposits; 2—the Quaternary Pleistocene Belahong River group; 3—middle Jurassic Taitun group; 4—lower Ordovician Baoquan group; 5—lower Cambrian Chenming group; 6—Dongfeng Mountain rock group; 7—Honglin rock group; 8—the Granodiorite of early Cretaceous epoch; 9—the Monzogranite of late Permian-early triassic; 10—the Syenogranite of late Permian-early Triassic; 11—the Monzogranite of late Permian-early Triassic; 12—the Alkali Feldspar Granite of late Permian-early Triassic; 13—the monzogranite of late Ordovician; 14—the Granite of Neo-Meso-Proterozoic; 15—airborne radioactive anomaly; 16—aeronautical radioactive high field
|
|
Geological map of the study area 1—Quaternary; 2—lower Cambrian Chenming group; 3—the gneissic monzogranite of late Ordovician; 4—granitic porphyry vein; 5—mineral body; 6—trough engineering
|
参数 | U | Th | K | Te | 简单算术平均数X | 0.494 | 1.008 | 0.201 | 1.121 | 中位数为m | 0.491 | 0.996 | 0.176 | 1.111 | 众数Mo | 0.450 | 0.940 | 0.080 | 1.090 | 最大值Xmax | 1.090 | 1.493 | 0.756 | 1.623 | 极差为R | 1.090 | 1.078 | 0.756 | 0.990 | 平均离差MD | 0.136 | 0.120 | 0.105 | 0.106 | 标准差σ | 0.175 | 0.156 | 0.131 | 0.136 | 变差系数Cv | 0.354 | 0.155 | 0.653 | 0.122 | 偏度 | 6.395 | 7.606 | 16.355 | 10.386 | 峰度 | 4.010 | 4.704 | 3.602 | 5.662 |
|
Tabular statement of logarithmic normal distribution test of energy spectrum data
|
|
Geological of the study area(a) and distribution map of uranium anomaly halo(b) 1—Quaternary; 2—lower Cambrian Chenming group; 3—the gneissic monzogranite of late Ordovician; 4—granitic porphyry vein; 5—the mineral body of Rb, Nb and Ta
|
参数 | U | Th | K | Te | 简单算术平均数X | 3.44 | 10.88 | 1.50 | 13.35 | 平均离差MD | 1.18 | 3.13 | 0.40 | 2.98 | 标准差σ | 1.77 | 4.25 | 0.51 | 3.78 | 变差系数Cv | 0.51 | 0.39 | 0.34 | 0.28 | 偏度 | 71.04 | 36.58 | 13.57 | 18.34 | 峰度 | 178.63 | 34.27 | 1.28 | 3.44 |
|
Statistical table for digital characteristics of energy spectrum data
|
|
An histogram for logarithmic distribution of energy spectrum data of Uranium content(a),Thorium content(b),Potassium content(c) and total content(d)
|
参数 | 数学模型 | 地质意义 | 钍铀比 | Th/U | 钍铀比值的变化可以指示蚀变、矿化等特殊地质作用过程 | 古铀量 (Gu) | Th/( / ) | 利用古铀与现代铀差异评价铀元素在成岩后活化迁移路径及淋失、叠加情况 | 交代蚀变 (F) | (U·K)/Th | 利用U、K、Th元素稳定性和迁出迁入能力不同反映元素在后期成矿作用中的交代蚀变情况 |
|
Characteristic parameter
|
|
Contour profile of ground gamma spectrum measurement parameters 1—mineralizer; 2—granitic porphyry vein; 3—speculated fracture; 4—the aomaly area of the value of F;a—contour map of Uranium content;b—contour map of Paleouranium content;c—contour map of the ratio of Uranium and Thorium;d—contour map of the value of metasomatic alteration
|
[1] |
王登红, 王瑞江, 李建康, 等. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 2013, 40(2):361-370.
|
[1] |
Wang D H, Wang R J, Li J K, et al. The progress in the strategic research and survey of rare earth,rare metal and rare-scattered elements mineral resources[J]. Geology in China, 2013, 40(2):361-370.
|
[2] |
王盘喜, 包民伟. 我国钽铌等稀有金属矿概况及找矿启示[J]. 金属矿山, 2015, 44(6):92-97.
|
[2] |
Wang P X, Bao M W. General situation and prospecting revelation of Tantalun-Niobium rare metal[J]. Metal Mine, 2015, 44(6):92-97.
|
[3] |
徐国战, 吴鸣谦, 徐文喜, 等. 黑龙江省漠河市782高地铌多稀有金属矿床的地质特征及找矿标志[J]. 矿床地质, 2019, 38(2):382-400.
|
[3] |
Xu G Z, Wu M Q, Xu W X, et al. Geological characteristics and prospecting indicatior of No.782 highland Nb-rich rare-metal deposit in Mohe City,Heilongjiang province[J]. Mineral Deposits, 2019, 38(2):382-400.
|
[4] |
林泽付, 马涛, 王睿. 黑龙江省小兴安岭地区航放异常查证报告[R]. 2016.
|
[4] |
Ling Z F, Ma T, Wang R. Report of the verification of airborne radiometric anomalies in Xiaoxing'anling area, Heilongjiang Province[R]. 2016.
|
[5] |
王汾连, 赵太平, 陈伟铌. 钽矿研究进展和攀西地区铌钽矿成因初探[J]. 矿床地质, 2012, 31(2):293-308.
|
[5] |
Wang F L, Zhao T P, Chen W. Advances in study of Nb-Ta ore deposits in Panxi area and tentative discussion on genesis of these ore deposits[J]. Mineral Deposits, 2012, 31(2):293-308.
|
[6] |
杨铸生, 段惠敏, 王秀京. 四川攀西地区铌钽矿床的地质特征及找矿方向[J]. 四川地质学报, 2007, 27(4):248-254.
|
[6] |
Yang Z S, Duan H M, Wang X J. Geological features and reconnaissance of Nb-Ta deposits in the Panzhihua-Xichang region,Sichuan[J]. Acta Geologica Sichuan, 2007, 27(4):248-254.
|
[7] |
杨武斌, 牛贺才, 单强, 等. 巴尔哲超大型稀有稀土矿床成矿机制研究[J]. 岩石学报, 2009, 25(11):2924-2932.
|
[7] |
Yang W B, Niu H C, Shan Q, et al. Ore-forming mechanism of the Baerzhe super-large rare and rare earth elements deposit[J]. Acta Petrologica Sincia, 2009, 25(11):2924-2932.
|
[8] |
章邦桐. 内生铀矿床及其研究方法[M]. 北京: 原子能出版社, 1990.
|
[8] |
Zhang B T. Endogenic uranium deposits and methods of study[M]. Beijing: Atomic EnergyPress, 1990.
|
[9] |
黎彤. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学, 1994, 23(2):140-145.
|
[9] |
Li T. Element abundances of China’s continental crust and its sedimentary layer and upper continental crust[J]. Geochimica, 1994, 23(2):140-145.
|
[10] |
胡鹏, 闫秋实, 叶松鑫, 等. 钍铀比值在判别铀成矿环境中的应用研究—以粤北书楼丘铀矿床为例[J]. 地质与勘探, 2020, 56(1):37-48.
|
[10] |
Hu P, Yan Q S, Ye S X, et al. Application of the thorium-uranium ratio in identifying uranium metallogenic environment:An example of the shulouqiu uranium deposit in Northern Guangdong Provine[J]. Geology and Exploration, 2020, 56(1):37-48.
|
[11] |
郭福生, 辜骏如. 能谱特征参数$\bar{Th}$/$\bar{U}$与$\bar{Th}$/$\bar{U}$之差异及古铀量计算公式的修正[J]. 铀矿地质,1997, 1(6):356-358.
|
[11] |
Guo F S, Gu J R. The difference between spectral characteristic parameter $\bar{Th}$/$\bar{U}$ and $\bar{Th}$/$\bar{U}$ and the revised formula for calculating paleo-uranium abundance[J]. Uranium mineral,1997, 1(6):356-358.
|
[12] |
徐文雄, 刘文, 伏顺, 等. 诸广岩体南部长排铀矿床勘查模式与找矿预测[J]. 地质学刊, 2018, 4(3):361-369.
|
[12] |
Xu W X, Liu W, Fu S, et al. Exploration model and prospecting prediction of the Changpai uranium deposit in southern Zhuguang rock mass[J]. Journal of Geology. 2018, 4(3):361-369.
|
[1] |
Zhuo-Dai LI, Huai-Qiang ZHANG, Wei-Huang LU, Jin-Yang LIU, Miao-Miao YAN. A study of structural optimization design of the wide-energy range gamma spectra logging system[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1291-1296. |
[2] |
Hai-Chuan SUN, Yong-Liang LIU, Cheng-Long SHAO. The application of integrated geophysical exploration to geothermal exploration in Haishiwan area[J]. Geophysical and Geochemical Exploration, 2019, 43(2): 290-297. |
|
|
|
|