|
|
Local tomographic velocity modeling of deep anhydrite-bearing rocks |
QI Peng( ) |
Sinopec Geophysical Research Institute,Nanjing 211103,China |
|
|
Abstract The deep parts of complex prospecting areas such as piedmont zones and ultra-deep strata are usually accompanied by anhydrite-bearing rocks,leading to great challenges to velocity modeling and affecting the final imaging quality and reliability.It is difficult for the conventional grid tomography method to adapt to the severe lateral velocity changes of special geological bodies.To this end,this study introduced a local tomographic velocity modeling method for deep anhydrite-bearing rocks.By constructing a new tomographic objective function for velocity anomalies,the local remaining residuals below the rocks were converted into the velocity update amount of the special lithologic bodies through tomography in order to further improve the accuracy of the velocity model and effectively improve the quality of imaging below the rocks.The actual data processing results have verified the effectiveness of the local tomography method,which will provide effective technical support for oil and gas prospecting in complex prospecting areas.
|
Received: 15 September 2021
Published: 17 August 2022
|
|
|
|
|
|
The imaging results with low-speed ointment body
|
|
The results of local tomography velocity modeling in low-speed ointment body a—the initial velocity model of ointment body;b—the conventional grid tomography inversion results;c—the local tomography inversion results
|
|
Comparison of the velocity update with conventional grid tomography (a) and local tomography
|
|
Comparison of the velocity model before and after local tomography a—the velocity model and imaging stack before local tomography;b—the velocity update of local tomography;c—the velocity model and imaging stack after local tomography
|
|
Comparison of the CIGs before (a) and after (b) local tomography inversion
|
|
The RTM imaging result before (a) and after (b) local tomography inversion
|
|
Comparison of horizontal slice in the low-speed ointment body a—conventional grid tomography;b—local tomography
|
|
The RTM imaging result from the conventional grid tomography (a) and the local tomography (b)
|
[1] |
刘文卿, 王西文, 刘洪, 等. 盐下构造速度建模与逆时偏移成像研究及应用[J]. 地球物理学报, 2013, 56(2):616-625.
|
[1] |
Liu W Q, Wang X W, Liu H, et al. Application of velocity modeling and reverse time migration to subsalt structure[J]. Chinese J. Geophys., 2013, 56(2):616-625.
|
[2] |
王兆旗, 叶月明, 庄锡进, 等. 层控网格层析速度建模技术在陆上盐丘区的应用[J]. 天然气地球科学, 2016, 27(11):2070-2076.
|
[2] |
Wang Z Q, Ye Y M, Zhuang X J, et al. Application of layer constrained grid tomographic velocity modeling in onshoresaltdomes area[J]. Natural Gas Geoscience, 2016, 27(11):2070-2076.
|
[3] |
刘畅, 李振春, 曲英铭, 等. 地震层析成像方法综述[J]. 物探与化探, 2020, 44(2):227-234.
|
[3] |
Liu C, Li Z C, Qu Y M, et al. A review of seismic tomography methods[J]. Geophysical and Geochemical Exploration, 2020, 44(2):227-234.
|
[4] |
郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2):372-380.
|
[4] |
Zheng H, Cai J X, Wang J B. Gaussian beam tomography with structure-filter and its applications[J]. Geophysical and Geochemical Exploration, 2020, 44(2):372-380.
|
[5] |
蔡杰雄. 基于方位—反射角度道集的高斯束层析速度建模方法及实现[J]. 物探与化探, 2018, 42(5):977-989.
|
[5] |
Cai J X. Method and application of Gaussian beam velocity tomography based on azimuth-reflection angle domain common imaging gather[J]. Geophysical and Geochemical Exploration, 2018, 42(5):977-989.
|
[6] |
薛花, 杜民, 文鹏飞, 等. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017, 41(5):846-851.
|
[6] |
Xue H, Du M, Wen P F, et al. The application of grid tomography method to quasi three-dimensional of Xisha hydrate[J]. Geophysical and Geochemical Exploration, 2017, 41(5):846-851.
|
[7] |
徐嘉亮, 周东红, 贺电波, 等. 高精度深度域层析速度反演方法[J]. 石油地球物理勘探, 2018, 53(4):737-744.
|
[7] |
Xu J L, Zhou D H, He D B, et al. High-precision velocity tomography inversion in the depth domain[J]. OGP, 2018, 53(4):737-744.
|
[8] |
李黎, 沈水荣, 吴意明, 等. 全波形反演与断控层析反演联合速度建模——以南海东部 A 油田为例[J]. 中国海上油气, 2020, 32(5):107-113.
|
[8] |
Li L, Shen S R, Wu Y M, et al. Velocity modeling combining full waveform inversion with fault controlled tomographic inversion:A case study of A oilfield in the eastern South China Sea[J]. China Offshore Oil and Gas, 2020, 32(5):107-113.
|
[9] |
Jones I F. 3-D prestack depth migration and velocity model building[J]. Geophysics, 1998, 63(4):1177-1183.
|
[10] |
徐嘉亮, 周东红, 贺电波, 等. 高精度深度域层析速度反演方法[J]. 石油地球物理勘探, 2018, 53(4):737-744.
|
[10] |
Xu J L, Zhou D H, He D B, et al. High precision velocity tomography inversion in the depth domain[J]. Oil Geophysical Prospecting, 2018, 53(4):737-744.
|
[11] |
局兴国, 郭恺, 刘定进. 基于相速度的TTI介质射线追踪方法研究[J]. 石油物探, 2017, 56(2):171-178.
|
[11] |
Ju X G, Guo K, Liu D J. Research on a ray tracing method for TTI medium based on phase velocity[J] .Geophysical Prospecting for Petroleum, 2017, 56(2):171-178.
|
[1] |
XU Wei-Ya. Discussion on floating datum and rugged topography[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 95-101. |
[2] |
Hai-Long PENG, Jian-Wei HE, Ting REN, Dun DENG, Fan JIANG, Rui-Ming WANG, Wen-Xiang ZHANG. The application of 3D velocity modeling based on geological constraint in Qiongdongnan basin deep water complex fault block area[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 537-544. |
|
|
|
|