|
|
Application of autocorrelation filtering to iron ore prospecting in Qihe-Yucheng area, Shandong Province |
WU Cheng-Ping1,2( ), YU Chang-Chun1,2( ), XIONG Sheng-Qing1,2, XU Jian-Chun1,2, QIAO Chun-Gui1,2 |
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology,Ministry of Natural Resources,Beijing 100083,China |
|
|
Abstract Deeply concealed iron ores cause relatively weak geophysical anomalies on the ground surface in the Qihe-Yucheng area, Shandong Province, a typical thickly covered area. Therefore, it is the key to the ore prospecting in this area to extract local weak anomalies caused by iron ores. Autocorrelation filtering can extract local weak anomalies by reducing the influence of a regional field using a high-pass filter of a certain wavelenth. The steps of the method are as follows. First, establish a model of incline plutons generating background field and models of iron ores of different scales and depths. Based on this, obtain the superimposed magnetic field through forward modeling. Then carry out autocorrelation filtering processing of the superimposed magnetic field to effectively extract the weak anomalies of iron ores. The autocorrelation filtering method was used to process the measured data in the Qihe-Yucheng area and the processing results were compared to the borehole data, verifying that the autocorrelation filtering method is effective. The extraction of weak anomalies using the autocorrelation filtering method allows for the ore prospecting scope to be reduced, which can provide guidance on the determination of prospecting favorable locations and drilling verification.
|
Received: 31 August 2021
Published: 17 August 2022
|
|
Corresponding Authors:
YU Chang-Chun
E-mail: chengpingwu@163.com;bjycc@126.com
|
|
|
|
|
xy,xz and yz plane profiles of geological model a—xy plane profile of theoretical geological model; b—xz plane profile of theoretical geological model; c—yz plane profile of theoretical geological model;
|
编号 | 质心坐标/ (x/m,y/m,z/m) | 长/m | 宽/m | 高/m | 磁化强度/ (10-3A·m-1) | ① | (1050,1050,-650) | 100 | 100 | 100 | 33600 | ② | (2025,2425,-475) | 50 | 50 | 50 | 33600 | ③ | (2950,2450,-1050) | 100 | 100 | 100 | 33600 |
|
Parameters of the iron ore models
|
|
The theoretical model test of self-correlation method a—ground forward ΔT field; b—extracted local weak anomaly map by using self auto correlation filting method
|
|
Geological map and magnetic map of study area
|
|
The result of self-correlation autocorrection filting and borehole distribution
|
[1] |
Garland G D. Combined analysis of gravity and magnetic anomalies[J]. Geophysics, 1951, 16(1): 51-62.
|
[2] |
姜枚, 张瑜才, 王德夫. 试谈统计分析方法在区域重磁资料解释中的某些应用[J]. 物探与化探, 1982, 5(6): 321-327.
|
[2] |
Jiang M, Zhang Y C, Wang D F. Some applications of statistical analysis method in regional gravity and magnetic data interpretation[J]. Geophysical and Geochemical Exploration, 1982, 5(6): 321-327.
|
[3] |
秦葆瑚. 用自相关滤波法提取弱异常[J]. 物探与化探, 1991, 15(3): 240-241.
|
[3] |
Qin B H. Extracting weak anomalies by self-correlation filtering[J]. Geophysical and Geochemical Exploration, 1991, 15(3):240-241.
|
[4] |
熊盛青. 航空物探勘查金属矿产时提取弱信息的解释方法[J]. 现代地质, 1997, 11(1): 67-73.
|
[4] |
Xiong S Q. Interpretation method of extracting weak signals of aero geophysical data for prospecting metallic deposits[J]. Geoscience, 1997, 11(1): 67-73.
|
[5] |
刘天佑. 相关滤波方法及其在扬子地台断裂分析中的应用[J]. 地质科技情报, 1993, 12(S): 45-50.
|
[5] |
Liu T Y. The relative filtering and its application to fault analysis of the yangtze platform[J]. Geological Science and Technology Information, 1993, 12(S): 45-50.
|
[6] |
韩兆红, 吴燕冈, 张成海, 等. 自相关滤波法提取重磁场中弱异常[J]. 世界地质, 2010, 29(1): 124-129.
|
[6] |
Han Z H, Wu Y G, Zhang C H, et al. Extracting weak anomaly in gravity and magnetic field with self-correlation filtering method[J]. Global Geology, 2010, 29(1): 124-129.
|
[7] |
王万银, 邱之云, 刘金兰, 等. 位场数据处理中的最小曲率扩边和补空方法研究[J]. 地球物理学进展, 2009, 24(4): 1327-1338.
|
[7] |
Wang W Y, Qiu Z Y, Liu J L, et al. The research to the extending edge and interpolation based on the minimum curvature method inpotential field data processing[J]. Progress in Geophysics, 2009, 24(4): 1327-1338.
|
[8] |
段本春, 徐世浙. 磁(重力)异常局部场与区域场分离处理中的扩边方法研究[J]. 物探化探计算技术, 1997, 19(4): 11-17.
|
[8] |
Yin B C, Xu S Z. A study of the scheme of extending edge in the processing of separating local field from regional field for magnetic/gravity anomaly[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1997, 19(4): 11-17.
|
[9] |
邢怡. 重磁异常分离方法技术研究[D]. 北京: 中国地质大学(北京), 2008.
|
[9] |
Xing Y. Research in the method of separating anomalous gravity and magnetie data[D]. Beijing: China University of Geosciences (Beijing), 2008.
|
[10] |
吴成平, 王卫平, 马勋表. 航磁弱异常区磁场水平调整——以黔东地区为例[J]. 地球物理学进展, 2017, 32(4): 1496-1500.
|
[10] |
Wu C P, Wang W P, Ma X B. Leveling aeromagnetic data for the weak magnetic field:A case study in eastern Guizhou[J]. Progress in Geophysics, 2017, 32(4): 1496-1500.
|
[11] |
王林飞, 薛典军, 何辉, 等. 插件技术在GeoProbe地球物理软件平台中的应用[J]. 物探与化探, 2013, 37(3): 547-551.
|
[11] |
Wang L F, Xue D J, He H, et al. The application of the plugin technology to geophysical software platform(Geoprobe)[J]. Geophysical and Geochemical Exploration, 2013, 37(3): 547-551.
|
[12] |
叶天竺, 韦昌山, 王玉往. 勘查区找矿预测理论与方法(各论)[M]. 北京: 地质出版社, 2017.
|
[12] |
Ye T Z, Wei C S, Wang Y W. Theory and method of prospecting prediction in prospecting areas (monograph)[M]. Beijing: Geological Publishing House, 2017.
|
[13] |
钱龙兵, 郭丽荣, 余庆亮. 广东莲花山断裂带南西段整装勘查区矿床预测模型[J]. 地质学刊, 2017, 41(3): 468-473.
|
[13] |
Qian L B, Guo L R, Yu Q L. Mineral prediction model of the integrative exploration area in the southwest section of the Lianhuashan fault zone, Guangdong Province[J]. Journal of Geology, 2017, 41(3): 468-473.
|
[14] |
郝兴中, 郑金明, 刘伟, 等. 山东省齐河——禹城地区矽卡岩型铁矿成矿预测[J]. 地球学报, 2020, 41(2): 293-302.
|
[14] |
Hao X Z, Zheng J M, Liu W, et al. Metallogenic prognosis of skarn-type iron ore deposits in Qihe-Yucheng area, Shandong province[J]. Acta Geoscientica Sinica, 2020, 41(2): 293-302.
|
[15] |
吴成平, 于长春, 王卫平, 等. 鲁西齐河地区岩(矿)石物性特征及应用[J]. 地球科学进展, 2019, 34(10): 1099-1107.
|
[15] |
Wu C P, Yu C C, Wang W P, et al. Physical characteristics of rocks and ores and their application in Qihe area,Western Shandong[J]. Advances in Earth Science, 2019, 34(10): 1099-1107.
|
[16] |
周明磊, 汝亮, 朱裕振, 等. 山东齐河—禹城地区重磁场特征及找矿预测[J]. 物探与化探, 2021, 45(2):301-307.
|
[16] |
Zhou M L, Ru L, Zhu Y Z, et al. Magnetic field characteristics and ore prediction in Qihe-Yucheng area of Shandong Province[J]. Geophysical and Geochemical Exploration, 2021, 45(2):301-307.
|
[17] |
沈立军, 朱裕振, 王怀洪, 等. 山东齐河—禹城地区李屯富铁矿床地球化学特征及地质意义[J]. 地质论评, 2021, 67(1): 84-98.
|
[17] |
Shen L J, Zhu Y Z, Wang H H, et at. Geochemical characteristics and geological significance of Litun iron ore deposit in Qihe-Yucheng area, Shandong Province[J]. Geological Review, 2021, 67(1): 84-98.
|
[18] |
郝兴中, 杨毅恒, 刘伟. 山东潘店地区矽卡岩型铁矿地质特征及找矿意义[J]. 科学技术与工程, 2018, 18(20): 51-58.
|
[18] |
Hao X Z, Yang Y H, Liu W. Geological characteristics and prospecting significance of skarn type iron deposit in Pandian area, Shandong province[J]. Science Technology and Engineering, 2018, 18(20): 51-58.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
|
|
|
|