|
|
Chronological study advances of the granites and uranium mineralization in the Changjiang uranium ore-field |
ZHU Wei-Ping1,2,3( ) |
1. School of Earth Science,East China University of Technology,Nanchang 330013,China 2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology,MNR,Beijing 100083,China 3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources,Beijing 100083,China |
|
|
Abstract The Changjiang uranium ore field is located in the south-central part of the Zhuguangshan pluton in northern Guangdong Province. This ore field holds many uranium deposits such as Mianhuakeng (302), Shulouqiu (305), and Changpai. These uranium deposits are mainly distributed along the contact parts between the Changjiang and Youdong plutons, and uranium mineralization is closely related to the Changjiang and Youdong plutons and their intrusive dykes. Previous researchers have conducted much testing on the formation ages of plutons, dykes, and deposits in the Changjiang ore field, obtaining abundant age data. This study summarized the chronological study advances of the granites, uranium mineralization, and dykes in the Changjiang uranium ore field. The results are as follows. The Changjiang biotite granite pluton was formed at 166~157 Ma (weighted average age: 160.9 Ma) during the Middle-Late Jurassic. The Youdong two-mica granite pluton was formed at 245.6~219.6 Ma (weighted average age: 232.1 Ma) during the Triassic. A variety of dykes such as gabbro diorites, hornblende diabases, fine-grained granitic rocks, and lamprophyres have developed in the study area. The dykes in the ore field can be divided into at least three categories according to their activity stages, namely Late Jurassic mafic dykes (150~145.1 Ma), Early Cretaceous acid dykes (138.6~123.9 Ma), and Early Cretaceous mafic dykes (110 Ma). The uranium mineralization of the Changjiang uranium ore field began during the Early Cretaceous and lasted until the Paleocene, showing a long time span ranging from 127 to 60 Ma. The uranium metallogenic periods include the Early Cretaceous metallogenic epoch (127~119 Ma), the Late Cretaceous metallogenic epoch (75~67 Ma), and the Paleocene metallogenic epoch (61~54 Ma). The age data are concentrated in the range of 70~60 Ma (Late Cretaceous-Paleocene), which might be the peak of uranium mineralization of the study area. The diagenesis and uranium mineralization of the Changjiang uranium ore field evolved in the order of Youdong pluton → Changjiang pluton → early mafic dykes → fine-grained granitic dykes → early uranium mineralization stage → fine-grained biotite granite dykes → late mafic dykes → second uranium mineralization stage → late uranium mineralization stage. There are six phases of diagenesis and uranium mineralization of the Changjiang uranium ore field, i.e., Triassic granitic magmatism (the Youdong pluton), Middle-Late Jurassic granitic magmatism (the Changjiang pluton), diagenesis of Late Jurassic mafic dykes (gabbro diorite dykes, 150 Ma; hornblende diabase dykes, 145 Ma), diagenesis of Early Cretaceous dykes and uranium mineralization (138.6~110 Ma), Late Cretaceous uranium mineralization (75~67 Ma), and Paleocene uranium mineralization (61~54 Ma). It is recommended that further studies should be conducted on the metallogenic chronology of uranium deposits, the geochronology of other dykes such as lamprophyres, and the uranium metallogenic mechanisms of deposits except for Mianhuakeng (302), Shulouqiu(305), and Changpai.
|
Received: 15 August 2021
Published: 03 January 2023
|
|
|
|
|
7](a) and regional structural location(b) of Changjiang uranium ore-field 1—Quaternary system; 2—Yanshanian medium fine-grained mica granite; 3—Yanshanian medium-grained porphyritic biotite granite; 4—Indosinian coarse-grained mica granite; 5—Indosinian coarse-grained biotite granite; 6—Caledonian granodiorite; 7—Mesozoic volcanic rocks; 8—Mesozoic granite; 9—diabase; 10—gabbro diorite; 11—fault structural zone; 12—geological boundary; 13—uranium deposit; 14—location;15—sampling position and number ">
|
Geological map[7](a) and regional structural location(b) of Changjiang uranium ore-field 1—Quaternary system; 2—Yanshanian medium fine-grained mica granite; 3—Yanshanian medium-grained porphyritic biotite granite; 4—Indosinian coarse-grained mica granite; 5—Indosinian coarse-grained biotite granite; 6—Caledonian granodiorite; 7—Mesozoic volcanic rocks; 8—Mesozoic granite; 9—diabase; 10—gabbro diorite; 11—fault structural zone; 12—geological boundary; 13—uranium deposit; 14—location;15—sampling position and number
|
| 样号 | 采用位置 | 岩性 | 分析方法 | 年龄/Ma | N | MSWD | 资料来源 | 长 江 岩 体 年 龄 | Y1 | 302、301坑口 | 中粒黑云母花岗岩 | 锆石U-Pb法 | 163.6±12.5 | - | - | 邓访陵(1987)[9] | Rb-Sr全岩等时线 年龄 | 170.7±3.9 | - | - | Y2 Y3 | 长江岩体 | 中粒黑云母花岗岩 | LA-ICP-MS锆石 U-Pb | 143±1.2 | - | 0.9 | 朱捌(2010)[10] | Y4 | 长江镇至邓屋镇 | 中粒黑云母花岗岩 | SHRIMP锆石 U-Pb | 160±2.0 | 9 | 1.8 | 朱捌(2010)[10]、邓平 等(2011)[11] | Y5 | 棉花坑钻孔 | 中粗粒黑云母花岗岩 | LA-ICP-MS锆石 U-Pb | 157.2±1.7 | 17 | 1.8 | 黄国龙等(2014)[12] | Y6 | 棉花坑铀钻孔 | 中粒黑云母花岗岩 | LA-ICP-MS锆石 U-Pb | 159.5±1.2 | 18 | 1.15 | 黄国龙等(2014)[12] | Y7 | 棉花坑钻孔 | 细粒不等粒黑云母 花岗岩 | LA-ICP-MS锆石 U-Pb | 161.6±2.1 | 15 | 2.5 | 黄国龙等(2014)[12] | Y8 | 岩体钻孔岩心 ZK211-3 | 花岗岩 | LA-ICP-MS锆石 U-Pb | 157.6±1.8 | 15 | 0.084 | 田泽瑾(2014)[13] | Y9 | ZK304-3 | 花岗岩 | LA-ICP-MS锆石 U-Pb | 158.8±1.9 | 14 | 0.27 | 田泽瑾(2014)[13] | Y10 | 302矿床9号带钻孔 和坑道 | 中粒黑云母花岗岩 | LA-ICP-MS锆石 U-Pb | 164±2.0 | 13 | 6.3 | 傅丽雯(2015)[14] | Y11 Y12 | 长江岩体 | 中粗粒黑云母花岗岩 | 电子探针 | 157±3.2 | 14 | 0.069 | 张龙(2016)[15]、张龙 等(2016)[16] | Y13 | 油洞岩体 | 长江岩体花岗岩 | 电子探针 | 160±3.3 | 22 | 0.32 | 张龙(2016)[15] | Y14 | 棉花坑KZK11-3 海拔141.15~ -168.19 m | 含晶质铀矿花岗岩 (长江岩体) | 电子探针 | 165±2.5 | 28 | 0.25 | 张龙(2016)[15] | Y15 | 具体位置不清 | 中粒黑云母花岗岩 | LA-ICP-MS锆石 U-Pb | 166±3.0 | 19 | 3.1 | 孙立强(2018)[17] | Y16 | 长江镇南侧锦原矿业 公司东侧山坡上 E113.939898°, N25.302975° | 中粒黑云母花岗岩 | LA-ICP-MS锆石 U-Pb | 161±1.0 | 17 | 0.24 | 钟福军(2018)[18] | Y17 | 中粒黑云母花岗岩 | SHRIMP锆石 U-Pb | 162.9±1.1 | 16 | 0.38 | 钟福军(2018)[18] | Y18 | 书楼丘凌溪村露头+ ZK26-1 海拔320~-150 m | 辉长闪长岩捕获了中 粒黑云母花岗岩 | LA-ICP-MS锆石 U-Pb | 165±2.0 | 6 | 0.96 | 钟福军等(2019)[7] | Y19 | 长江岩体 | 中粗粒黑云母花岗岩 | LA-ICP-MS独居石 | 156.8±1.7 | 14 | 0.76 | 陈妍(2021)[19] | 油 洞 岩 体 年 龄 | Y20 | 油洞岩体 | 二云母花岗岩 | LA-ICP-MS锆石 U-Pb | 233.9±6.3 | - | 7.7 | 张敏(2006)[20] | Y21 | 仁化县至长江镇 E113°56'59.2″, N25°18'41.2″ | 中粒小斑状二云母 花岗岩 | SHRIMP锆石 U-Pb | 232±4.0 | 12 | 3.2 | 朱捌(2010)[10]、黄国 龙等(2012)[21] | Y22 | 油洞岩体 | 花岗岩 | 电子探针 | 225±5.4 | 17 | 0.51 | 张龙(2016)[15] | Y11 | 油洞岩体 | 花岗岩 | LA-ICP-MS锆石 U-Pb | 226.4±3.5 | 15 | 0.83 | Zhang L,et al.(2018)[4] | Y23 | 长江镇东南下学塘垇 村新修公路 E113.972855°, N25.298562° | 中粗粒小斑状二云母 花岗岩 | LA-ICP-MS锆石 U-Pb | 244±1.6 | 18 | 0.091 | 钟福军(2018)[18] | Y24 | 油洞岩体 | 中粗粒二云母花岗岩 | LA-ICP-MS独居石 定年 | 228±1.5 | 23 | 0.83 | 陈妍等(2021)[19] | | 样号 | 采用位置 | 岩性 | 分析方法 | 年龄/Ma | N | MSWD | 资料来源 | 脉 岩 年 龄 | Y25 | 油洞断裂带 | 角闪辉绿岩 | 全岩Ar-Ar定年 | 110.6±2.0 | - | - | 曹豪杰(2013)[22] | Y26 | 长江矿田 | 角闪辉绿岩 | 角闪石Ar-Ar | 145.1±1.5 | - | - | Zhang L,et al. (2018)[4] | Y18 | 书楼丘凌溪村露头+ ZK26-1海拔 320~-150 m | 辉长闪长岩 | LA-ICP-MS锆石 U-Pb | 150±1.0 | 17 | 0.18 | 钟福军等(2019)[7] | Y27 | 棉花坑9号矿带南 段钻孔深部 | 细粒花岗质脉岩 | LA-ICP-MS锆石 U-Pb | 138.6±1.3 | 16 | 0.81 | 徐文雄等(2014)[23] | Y28 | 棉花坑 ZK15-9 海拔约-105m | 细粒黑云母花岗岩 | LA-ICP-MS锆石 U-Pb | 123.9±1.3 | 15 | 1.3 | 周航兵等(2018)[24] | 书 楼 丘 铀 矿 床 | Y29 | 书楼丘 ZK16-4 海拔-72.36 m | 微晶石英脉型铀矿 | LA-ICP-MS原位锆 石 U-Pb | 71.4±1.3 | 16 | 2.2 | 钟福军等(2019)[25] | Y30 | 书楼丘 ZK26-1 海拔-75.89 m | 碎裂岩型铀矿 | LA-ICP-MS原位锆 石U-Pb | 74.4±1.7 | 9 | 1.5 | 钟福军等(2019)[25] | Y31 | 书楼丘 ZK87-1 海拔112.30 m | 碎裂煌斑岩型沥青 铀矿 | LA-ICP-MS锆石 U-Pb | 71.3±1.1 | 15 | 1.6 | 郑国栋等(2021)[26] | 棉 花 坑 铀 矿 床 | Y32 | 棉花坑9号矿脉 | 角砾状沥青铀矿 (早期矿化年龄) | U-Pb 溶液法 | 127 | - | - | 张国全(2008)[27] | Y33 | 棉花坑9号矿脉 | “红化”沥青铀矿 (主成矿年龄) | U-Pb 溶液法 | 54 | - | - | 张国全(2008)[27] | Y34 | 棉花坑ZK37-3 海拔653 m | 碱交代岩钾长石 | K-Ar | 81.96±1.76 | - | - | 张爱等(2009)[28] | 06148等 | 棉花坑 | 沥青铀矿 | 235U-204Pb等时线 | 68.7±3.0 | 8 | 665 | 黄国龙等(2010)[29] | Sm-Nd等时线 | 70±11 | 7 | 0.50 | 黄国龙等(2010)[29] | Y11 Y12 | 长江岩体 | 沥青铀矿 | 电子探针 | 75±2.1 | 5 | 1.64 | 张龙(2016)[15]、张龙 等(2016)[16] | Y11 Y12 | 长江岩体 | 沥青铀矿 | 电子探针 | 104±1.6 | 20 | 1.60 | 张龙(2016)[15]、张龙 等(2016)[16] | Y14 | 棉花坑Ⅳ-1带 | 沥青铀矿 | 电子探针 | 67±4.1 | 4 | 5.2 | 张龙(2016)[15] | Y14 | 棉花坑Ⅳ-1带 | 沥青铀矿 | 电子探针 | 94±1.1 | 14 | 0.82 | 张龙(2016)[15] | Y14 | 棉花坑Ⅳ-1带 | 沥青铀矿 | 电子探针 | 103±1.8 | 18 | 1.9 | 张龙(2016)[15] | Y14 | 棉花坑Ⅳ-1带 | 沥青铀矿 | 电子探针 | 119±3.5 | 4 | 0.37 | 张龙(2016)[15] | Y14 | 棉花坑Ⅳ-2带 | 沥青铀矿 | 电子探针 | 67±2.1 | 12 | 8.3 | 张龙(2016)[15] | Y36 | 棉花矿坑海拔150 m | 石英脉 | LA-ICP-MS原位锆 石U-Pb | 90±43 | 12 | 1.4 | Chrstophe B,et al. (2018)[30] | Y37 | 棉花矿坑海拔150 m | 石英脉 | LA-ICP-MS原位锆 石U-Pb | 93±15 | 6 | 2.5 | Chrstophe B,et al. (2018)[30] | Y38 | 棉花坑 KZK39-3 海拔-268.95 m | 铀矿石 | LA-ICP-MS原位 锆石U-Pb | 59.5±1.0 | 10 | 0.39 | Zhong F J, et al. (2018)[31] | Y39 | 棉花坑 | 铀矿石 | LA-ICP-MS原位锆 石U-Pb | 60.0±0.5 | 21 | 1.13 | Zhong F J, et al. (2018)[31] | Y40 | 棉花坑 坑道采 场海拔-150 m | 碎裂岩型铀矿 | LA-ICP-MS原位锆 石 U-Pb | 60.8±0.6 | 30 | 0.31 | 钟福军等(2019)[25] | Y41 | 棉花坑 ZK26-2 海拔115.89 m | 微晶石英脉型铀矿 | LA-ICP-MS原位锆 石U-Pb | 66.8±1.6 | 16 | 3.8 | 钟福军等(2019)[25] | | 样号 | 采用位置 | 岩性 | 分析方法 | 年龄/Ma | N | MSWD | 资料来源 | 长 排 铀 矿 床 | Y42 | 长排ZK1-1 海拔138.56 m | 萤石碎裂岩型铀矿 | LA-ICP-MS原位 锆石U-Pb | 62.4±2.5 | 8 | 2.4 | 钟福军等(2019)[25] | Y43 | 长排ZK205-3 海拔67.18 m | 微晶石英脉型铀矿 | LA-ICP-MS原位 锆石U-Pb | 70.2±0.5 | 22 | 2.0 | 钟福军等(2019)[25] | | Y44 | 扶溪岩体 | 花岗闪长岩 | LA-ICP-MS锆石 U-Pb | 440.7±3.3 | 18 | 2.4 | 于玉帅等(2017)[32] | | Y45 | 扶溪岩体 | 花岗岩 | LA-ICP-MS锆石 U-Pb | 426.7±5.4 (402.2~451.6) | 20 | 1.4 | Zhang L, et al. (2018)[4] |
|
Ages of Granite and uranium mineralization in the Changjiang uranium ore-field
|
|
Age probability distribution of Changjiang rock mass
|
|
Age probability distribution of Youdong rock mass
|
|
Age probability distribution of veins in Changjiang uranium ore-field
|
|
Mineralization age probability distribution of Mianhuakeng uranium deposits
|
|
Illustration of rock mass formation and uranium mineralization evolution stage of Changjiang uranium ore-field
|
[1] |
Wang K X, Sun L Q, Sun T, et al. Provenance, weathering conditions, and tectonic evolution history of the Cambrian meta-sediments in the Zhuguangshan area, Cathaysia Block[J]. Precambrian Research, 2018, 311:195-210.
|
[2] |
张伟盟, 严杰, 钟福军, 等. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究[J]. 岩矿测试, 2019, 38(4):449-460.
|
[2] |
Zhang W M, Yan J, Zhong F J, et al. In situ LA-ICP-MS U-Pb dating of uraninite from the Shijiaowei granite-type uranium deposit,northern Guangdong Province[J]. Rock and Mineral Analysis, 2019, 38(4): 449-460.
|
[3] |
Zhang L, Chen Z Y, Wang F Y, et al. Apatite geochemistry as an indicator of petrogenesis and uranium fertility of granites: A case study from the Zhuguangshan batholith, South China[J]. Ore Geology Reviews, 2021, 128:1-15.
|
[4] |
Zhang L, Chen Z Y, Li X F, et al. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex,South China:Implications for uranium mineralization[J]. Lithos, 2018,308-309:19-33.
|
[5] |
李杰, 黄宏业, 刘子杰, 等. 诸广中段鹿井地区辉绿岩40Ar-39Ar年代学[J]. 吉林大学学报:地球科学版, 2021, 51(2):442-454.
|
[5] |
Li J, Huang H Y, Liu Z J, et al. 40Ar-39Ar geochronology of diabase in Lujing area of middle Zhuguangshan[J]. Journal of Jilin University:Earth Science Edition, 2021, 51(2):442-454.
|
[6] |
罗强, 刘斌, 郭新文, 等. 诸广南部书楼丘地区煌斑岩地球化学特征与铀成矿关系[J]. 地质学刊, 2020, 44(1/2):63-70.
|
[6] |
Luo Q, Liu B, Guo X W, et al. Geochemical characteristics and uranium mineralization of lamprophyre in the Shulouqiu area,southern Zhuguang[J]. Journal of Geology, 2020, 44(1/2):63-70.
|
[7] |
钟福军, 潘家永, 巫建华, 等. 粤北长江铀矿田辉长闪长岩的岩石成因及其与铀成矿的关系[J]. 地球科学, 2019, 44(9):3042-3059.
|
[7] |
Zhong F J, Pan J Y, Wu J H, et al. Petrogenesis and its relationship with uranium mineralization of gabbro-diorite in Changjiang uranium ore-field,northern Guangdong Province,China[J]. Earth Science, 2019, 44(9):3042-3059.
|
[8] |
何德宝, 范洪海, 汪昱. 下庄铀矿田成矿模式[J]. 铀矿地质, 2016, 32(3):152-158.
|
[8] |
He D B, Fan H H, Wang Y. Metallogenic model in Xianzhuang uranium ore field[J]. Uranium Geology, 2016, 32(3):152-158.
|
[9] |
邓访陵. 诸广山花岗岩复式岩基南部的同位素地质年代学[J]. 地球化学, 1987(2): 141-152.
|
[9] |
Deng F L. Isotopic geochronology of the souther Zhuguangshan granite batholith[J]. Geochimica, 1987(2):141-152.
|
[10] |
朱捌. 地幔流体与铀成矿作用研究——以诸广南部铀矿田为例[D]. 成都: 成都理工大学, 2010.
|
[10] |
Zhu B. The study of mantle liquid and uranium metallogenesis—Take uranium ore field of south zhuguang mountain as an example[D]. Chengdu: Chendu University of Technology, 2010.
|
[11] |
邓平, 任纪舜, 凌洪飞, 等. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质论评, 2011, 57(6):881-888.
|
[11] |
Deng P, Ren J S, Ling H F, et al. Yanshanian granite batholiths of southern Zhuguang mountain:SHRIMP zircon U-Pb dating and Tectonic implications[J]. Geological Review, 2011, 57(6):881-888.
|
[12] |
黄国龙, 刘鑫扬, 孙立强, 等. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究[J]. 地质学报, 2014, 88(5):837-849.
|
[12] |
Huang G L, Liu X Y, Sun L Q, et al. Zircon U-Pb dating,geochemical characteristic and genesis of the Changjiang granite in northern Guangdong[J]. ACTA Geologica Sinia, 2014, 85(5):837-849.
|
[13] |
田泽瑾. 诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究[D]. 北京: 中国地质大学(北京), 2014.
|
[13] |
Tian Z J. Uranium-bearing and barren granites from the Zhuguang mountain: Geochronology,element geochemistry,mineralogy[D]. Beijing: China University of Geosciences (Beijing), 2014.
|
[14] |
傅丽雯. 粤北302铀矿床围岩蚀变分带、成矿流体与成矿物质来源研究[D]. 南京: 南京大学, 2015.
|
[14] |
Fu L W. Study on wall rock alteration zoning,the source of ore-forming fluid and ore-forming latenal of the 302 uranium deposit in northern Guangdong Province[D]. Nanjing: Nanjing University, 2015.
|
[15] |
张龙. 粤北诸广山岩体等铀矿物研究[D]. 北京: 中国地质大学(北京), 2016.
|
[15] |
Zhang L. Study on uranium minerals of Zhuguangshan complex pluton,northern Guangdong[D]. Beijing: China University of Geosciences (Beijing), 2016.
|
[16] |
张龙, 陈振宇, 田泽瑾, 等. 电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J]. 岩矿测试, 2016, 35(1):98-107.
|
[16] |
Zhong L, Chen Z Y, Tian Z J, et al. The application of electron microprobe dating method on uranium minerals in Changjiang granite,northern Guangdong[J]. Rock and Mineral Analysis, 2016, 35(1):98-107.
|
[17] |
孙立强. 南岭诸广山地区中生代花岗岩成因及其对铀成石广作用的启示[D]. 南京: 南京大学, 2018.
|
[17] |
Sun L Q. Petrogenesis of the Mesozoic granites in the Zhuguangshan area in the Nanling Region and their implications for the uranium mineralization[D]. Nanjing: Nanjing University, 2018.
|
[18] |
钟福军. 华南花岗岩型铀矿成岩成矿作用研究——以粤北长江铀矿田为例[D]. 南昌: 东华理工大学, 2018.
|
[18] |
Zhong F J. Petrogensis and mineralization of granite type uranium deposits in South China:A case study of the Changjiang uranium ore field in northern Guangdong Province[D]. Nanchang: East China University of Technology, 2018.
|
[19] |
陈妍, 潘家永, 钟福军, 等. 粤北长江铀矿田花岗岩独居石U-Pb同位素定年及其地质意义[J]. 岩矿测试, 2022, 41(1):1-13.
|
[19] |
Chen Y, Pan J Y, Zhong F J, et al. U-Pb isotopic dating of granite monazite and its geological significance from the Changjiang uranium ore field,northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(1):1-13.
|
[20] |
张敏. 粤北产铀岩体的年代学和地球化学及铀成矿机制研究[D]. 南京: 南京大学, 2006.
|
[20] |
Zhang M. Geochronology, geochemistry and uranium metallogenic mechanism of uranium in northern Guangdong[D]. Nanjing: Nanjing University, 2006.
|
[21] |
黄国龙, 曹豪杰, 凌洪飞, 等. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究[J]. 地质学报, 2012, 86(4):577-586.
|
[21] |
Huang G L, Cao H J, Ling H F, et al. Zircon SHRIMP U-Pb age,geochemistry and genesis of the Youdong granite in northern Guangdong[J]. Acta Geologica Sinia, 2012, 86(4):577-586.
|
[22] |
曹豪杰, 黄国龙, 许丽丽, 等. 诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征[J]. 地质学报, 2013, 87(7):957-966.
|
[22] |
Cao H J, Huang G L, Xu L L, et al. The Ar-Ar age and geochemical characteristics of diabase dykes of the Youdong fault zone in south of Zhuguang granites pluton[J]. Acta Geologica Sinia, 2013, 87(7):957-966.
|
[23] |
徐文雄, 谭忠银, 罗春梧, 等. 棉花坑铀矿床花岗质脉岩地球化学特征及其与铀成矿的关系[J]. 铀矿地质, 2014, 30(6):345-355.
|
[23] |
Xu W X, Tan Z Y, Luo C W, et al. Geochemical characteristic and ore-forming geological significance of fine crystalline in Mianhuakeng uranium deposit,northern Guangdong[J]. Uranium Geology, 2014, 30(6):345-355.
|
[24] |
周航兵, 潘家永, 钟福军, 等. 北长江铀矿田细粒黑云母花岗岩的成因及其与铀成矿关系[J]. 矿物岩石, 2018, 38(1):10-19.
|
[24] |
Zhou H B, Pan J Y, Zhong F J, et al. Genesis of fine grained biotite granite in the Changjiang uranium ore field,northern Guangdong of China,and its relation with uranium mineralization[J]. Journal of Mineralogis and Petrology, 2018, 38(1):10-19.
|
[25] |
钟福军, 严杰, 夏菲, 等. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J]. 岩石学报, 2019, 35(9):2727-2744.
|
[25] |
Zhong F J, Yan J, Xia F, et al. In-situ U-Pb isotope geochronology of uraninite for Changjiang granite-type uranium ore field in northern Guangdong,China: Implications for uranium mineralization[J]. Acta Petrologica Sinica, 2019b, 35(9):2727-2744.
|
[26] |
郑国栋, 罗强, 刘文泉, 等. 粤北书楼丘铀矿床沥青铀矿原位 U-Pb 年龄和元素特征及其地质意义[J]. 地球科学, 2021, 46(6):2172-2186.
|
[26] |
Zheng G D, Luo Q, Liu W Q, et al. In-situ U-Pb age and elemental characteristics of the pitchblende in the Shulouqiu uranium deposit and its geological significance[J]. Earth Science, 2021, 46(6):2172-2186.
|
[27] |
张国全. 华南热液铀矿床地球化学研究——以302 铀矿床为例[D]. 北京: 中国科学院大学, 2008.
|
[27] |
Zhang G Q. Geochemistry of hydrothermal uranium deposits in South China:A case study of the No.302 uranium deposit[D]. Beijing: Chinese Academy of Sciences and of Institute of Geochemisty, 2008.
|
[28] |
张爱, 刘成东, 余志灵, 等. 诸广南部铀矿区碱交代岩特征及同位素年代学研究[J]. 东华理工大学学报:自然科学版, 2009, 32(3):209-212.
|
[28] |
Zhang A, Liu C D, Yu Z L, et al. The features and geochronology of alkali metasomatic rock in southern Zhuguang uranium mineralization area[J]. Journal of East China Universtiy of Technology, 2009, 32(3):209-212.
|
[29] |
黄国龙, 尹征平, 凌洪飞, 等. 粤北地区302矿床沥青铀矿的形成时代[J]. 矿床地质, 2010, 29(2):352-360.
|
[29] |
Huang G L, Yin Z P, Ling H F, et al. Foration age,geochemical characteris ticas and genesis of pitchblende from No.302 uranium deposit in northern Guangdong[J]. Mineral Deposits, 2010, 29(2):352-360.
|
[30] |
Christophe B, Liu X D, Julien M, et al. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang[J]. Ore Geology Reviews, 2018(92):588-612.
|
[31] |
Zhong F J, Pan J Y, Qi J M, et al. New in-situ LA-ICP-MS U-Pb ages of uraninite from the Mianhuakeng uranium deposit,northern Guangdong Province,China: Constraint on the metallogenic mechanism[J]. Acta Geologica Sinica:English Edition, 2018, 92(2):852-854.
|
[32] |
于玉帅, 戴平云, 郭福生, 等. 粤北扶溪岩体成因及时代:来自矿物化学、岩石地球化学及LA-ICP-MS锆石U-Pb年龄证据[J]. 地质科技情报, 2017, 36(6):71-82.
|
[32] |
Yu Y S, Dai P Y, Guo F S, et al. Genesis and age of Fuxi granodiorite Southern Zhuguang mountain,northern Guangdong Province:Constrain from mineralogy chemistry,geochemistry and LA-ICP-MS Zircon U-Pb dation[J]. Geological Science and Tecnology Information, 2017, 36(6):71-82.
|
[33] |
骆金诚, 齐有强, 王连训. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识[J]. 岩石学报, 2019, 35(9):2660-2678.
|
[33] |
Luo J C, Qi Y Q, Wang L X, et al. Ar-Ar dating of mafic dykes from the Xiazhuang uranium ore field in northern Guangdong,South China: A reevaluation of the role of mafic dyke in uranium mineralization[J]. Acta Petrologica Sinica, 2019, 35(9):2660-2678.
|
[34] |
岑涛, 李武显, 陶继华, 等. 赣南版石—蔡坊火山岩年代学、地球化学和锆石Hf同位素特征及其地质意义[J]. 大地构造与成矿学, 2017, 41(5):933-949.
|
[34] |
Ceng T, Li X W, Tao J H, et al. Geochronology, geochemistry and zircon Hf isotope for Banshi and Caifang volcanic rocks from Southern Jiangxi Province and their geological implications[J]. Geotectonica et Metallogenia, 2017, 41(5):933-949.
|
[35] |
胡瑞忠, 毕献武, 彭建堂, 等. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J]. 矿床地质, 2007, 26(2):139-152.
|
[35] |
Hu R Z, Bi X W, Peng J T, et al. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallo-genesis in South China[J]. Mineral Deposits, 2007, 26(2):139-152.
|
[36] |
王家松, 彭丽娜, 张楠. LA-ICP-MS锆石U-Pb同位素定年存在的基体效应研究进展[J]. 理化检验:化学分册, 2017, 53(6):736-744.
|
[36] |
Wang J S, Peng L N, Zhang N. Research progress on matrix effects in zircon U-Pb isotopic dating by LA-ICP-MS[J]. Physical Testing and Chemical Analysis Part B:Chemical analysis, 2017, 53(6):736-744.
|
[37] |
Zhao K D, Jiang S Y, Ling H F, et al. Reliability of LA-ICP-MS U-Pb dating of zircons with high U concentrations: A case study from the U-bearing Douzhashan Granite in South China[J]. Chemical Geology, 2014, 389:110-121.
|
[38] |
Zamyatin D A, Shchapova Y V, Votyakov S L, et al. Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif,middle Urals,Russia[J]. Miner Petrol, 2017, 111:475-497.
|
[1] |
YIN Yong-Bing, LI Hai-Ying, LU Teng, HAN Piao-Ping, KONG De-Xu, WAN Huan-Huan, PANG Wen-Jing, WU Zhi-Chun. Relationships between thermal structure characteristics and mineralization of the Xiangshan uranium ore field:A case study of the Zoujiashan deposit[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1388-1395. |
[2] |
Yu Xiang, Wang Shuo, Hu Ying-Cai, Duan Shu-Xin. Study on electrical structure and uranium metallogenic environment of basalt-covered area in the northern Erlian Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1157-1166. |
|
|
|
|