|
|
Research progress of SmNiO3 and feasibility analysis of applying SmNiO3 in ocean electric field sensors |
XIAO Yue-Tong1( ), WANG Meng1( ), WANG Xing-Zhuo1, CHEN Kai1, SHI Zong-Yang2, ZHAO Yi-Yu2, FU Yue-Si1 |
1. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083,China 2. Beijing Institute of Mechanical Equipment, Beijing 100854,China |
|
|
Abstract Ocean electric field signals are widely used in the fields of geological tectonics, water target detection, physical ocean, and the analysis of ocean physical characteristics. It is of great scientific value to collect the ocean electric field signals, while the ocean electric field is measured using ocean electric field sensors. In recent years, perovskite-type composite oxides have become a research hot spot as new materials. Among these composite oxides, SmNiO3 is the one that possesses some unique properties including metal-insulator phase transition, strong stability in seawater, and high sensitivity to low-frequency electric field signals. Therefore, it is expected to become a new type of electrode materials in ocean electric field sensors. Domestic and foreign researchers have carried out some studies on SmNiO3, which mainly focus on the electrical properties (especially the metal-insulator phase transition and optical properties) and preparation process of SmNiO3. This paper systematically reviews the above research contents and preliminarily explores the feasibility of applying SmNiO3 in marine electric field sensors.
|
Received: 07 May 2021
Published: 28 June 2022
|
|
Corresponding Authors:
WANG Meng
E-mail: 2477418907@qq.com;wangmeng@cugb.edu.cn
|
|
|
|
2] ">
|
Schematic diagram of marine electrode connection system[2]
|
|
The ampullae Lorenzini of shark
|
O 3 [ 9 ] ">
|
Schematic diagram of the interaction process between hydrogen ions and SmNi
|
|
Schematic diagram of lithium doping in SmNiO3
|
9] ">
|
Changes of conductivity (a) and optical properties (b) of SmNiO3 in 0.6 mol/L NaCl solution under electric field [9]
|
[1] |
陈闻博, 宋玉苏, 王烨煊. 海洋电场传感器研究概况[J]. 传感器与微系统, 2019, 38(12):1-4.
|
[1] |
Chen W B, Song Y S, Wang Y X. Research situation of marine electric field sensors[J]. Transducer and Microsystem Technologies, 2019, 38(12): 1-4.
|
[2] |
申振, 宋玉苏, 王烨煊, 等. Ag/AgCl和碳纤维海洋电场电极的探测特性研究[J]. 仪器仪表学报, 2018, 39(2):211-217.
|
[2] |
Shen Z, Song Y S, Wang Y X, et al. Study on the detection characteristics of Ag /AgCl and carbon fiber marine electric field electrodes[J]. Chinese Journal of scientific instruments, 2018, 39(2): 211-217.
|
[3] |
王杰红. 超低噪声海洋电场传感器的研究[D]. 西安: 西安电子科技大学, 2014.
|
[3] |
Wang J H. Research on low noise marine electric field sensor[D]. Xi'an: Xidian University, 2014.
|
[4] |
王泽臣. 海洋电场探测电极研究[D]. 杭州: 杭州电子科技大学, 2020.
|
[4] |
Wang Z C. Research on marine electric field detection electrode[D]. Hangzhou: Hangzhou Dianzi University, 2020.
|
[5] |
张翼. 全固态海洋传感器稳定性研究[D]. 西安: 西安电子科技大学, 2009.
|
[5] |
Zhang Y. Research on the stability of all solid-state marine sensor[D]. Xi'an: Xidian University, 2009.
|
[6] |
张坤, 宋玉苏, 李瑜. 海洋电场探测电极的研究概况[J]. 材料导报, 2014, 28(21):20-23.
|
[6] |
Zhang K, Song Y S, Li Yu. Research status of underwater electric field sensing electrode[J]. Materials Reports, 2014, 28(21): 20-23.
|
[7] |
Petiau G, Dupis A. Noise,temperature coefficient, and long time stability of electrodes for telluric observations[J]. Geophysical Prospecting, 2010, 28(5): 792-804.
|
[8] |
Yoo P, Liao P. Metal-to-insulator transition in SmNiO3 induced by chemical doping: A first principles study[J]. Molecular Systems Design & Engineering, 2018, 3(1): 264-274.
|
[9] |
Zhang Z, Schwanz D, Narayanan B, et al. Perovskite nickelates as electric-field sensors in salt water[J]. Nature, 2018, 553: 68-72.
|
[10] |
贾理男, 富一博, 赵哲, 等. 钙钛矿稀土镍酸盐SmNiO3薄膜的研究进展[J]. 表面技术, 2020, 49(4):151-160,187.
|
[10] |
Jia L N, Fu Y B, Zhao Z, et al. Research on progress in perovskite Nickelate SmNiO3 Film[J]. Surface Technology, 2020, 49(4): 151-160, 187.
|
[11] |
孙岩. 钙钛矿SmNiO3外延薄膜的制备及其金属—绝缘体相变的电场调控研究[D]. 上海: 华东师范大学, 2017.
|
[11] |
Sun Y. Study on preparation of perovskite SmNiO3 epitaxial thin films and tuning of the metal-insulator transition by electric field[D]. Shanghai: East China Normal University, 2017.
|
[12] |
黄浩亮, 罗震林, 杨远俊. Effect of compressive strain on MI transition in SmNiO3 epitaxial thin films grown on LSAO substrate[C]// 中国材料研究学会, 2011.
|
[12] |
Huang H L, Luo Z L, Yang Y J. Effect of compressive strain on MI transition in SmNiO3 epitaxial thin films grown on LSAO substrate[C]// Chinese Society for Materials Research, 2011.
|
[13] |
Torriss B, J Margot, M Chaker. Metal-insulator transition of strained SmNiO3 Thin films: Structural, electrical and infrared optical properties[J]. Scientific Reports, 2017, 7(40915): 1-9.
|
[14] |
Iqbal A, Khan S A, Rahman N U, et al. Epitaxial growth controlled tailoring of Metal-Insulator (MI) Transition properties of rare earth correlated oxides[C]// The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Waikiki Beach, HI, USA, 2014.
|
[15] |
Chen J K, A Bird, Yan F B, et al. Mechanical and correlated electronic transport properties of preferentially orientated SmNiO3 films[J]. Ceramics International, 2020, 46(5):6693-6697.
|
[16] |
白玉杭. 钙钛矿镍酸盐异质结构的制备与性能研究[D]. 南京: 南京大学, 2017.
|
[16] |
Bai Y H. Preparation and characterization of perovskite nickelate heterostructures[D]. Nanjing: Nanjing University, 2017.
|
[17] |
胡昌. 钙钛矿型稀土镍酸盐RNiO3薄膜光电性质的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
[17] |
Hu C. Study on Photoelectric properties of perovskite-type rare earth nickel RNiO3 films[D]. Harbin: Harbin Institute of Technology, 2020.
|
[18] |
贾梅秀. 钛酸钡/镍酸钐异质结的阻变机理研究[D]. 上海:华东师范大学, 2019.
|
[18] |
Jia M X. Study on the resistive switching mechanism of BaTiO3/SmNiO3 heterojunction[D]. Shanghai:East China Normal University, 2019.
|
[19] |
胡海洋, 陈吉堃, 邵飞, 等. 应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导[J]. 物理学报, 2019, 68(2):198-207.
|
[19] |
Hu H Y, Chen J K, Shao F, et al. Conductivity and infrared photoconductivity of SmNiO3 perovskite oxide thin films under stress[J]. Acta physica Sinica, 2019, 68(2): 198-207.
|
[20] |
Chen B J, Sun Y, Yang N. Electronic phase diagram of oxygen-deficient SmNiO3-δ epitaxial thin films[J]. Journal of Physics D: Applied Physics, 2017, 50(23):1.
|
[21] |
Lan C, Li H, Zhao S. A first-principles study of the proton and oxygen migration behavior in the rare-earth perovskite SmNiO3[J]. Journal of Computational Electronics, 2020, 19(3): 905-909.
|
[22] |
Conchon F, Boulle A, Girardot C, et al. Influence of strain relaxation on the structural stabilization of SmNiO3 films epitaxially grown on (001) SrTiO3 substrates[J]. Materials Science and Engineering. B:Solid State Materials for Advanced Technology, 2007, 144(1-3): 32-37.
|
[23] |
Li Z Y, Zhou Y, Qi H, et al. Correlated perovskites as a new platform for super-broadband-tunable photonics[J]. Advanced Materials, 2016, 28(41): 9117-9125.
|
[24] |
Cui Y Y, Ren J S, Yang G, et al. First-principles study of intrinsic point defects and optical properties of SmNiO3[J]. The Journal of Physical Chemistry A, 2021, 125(1): 356-365.
|
[1] |
LIU Bin, XU Jin-Li, DU Xue-Miao, TANG Rui-Ling, ZHANG Peng-Peng, BAI Jin-Feng, YU Lin-Song, WAN Fang. Determination of fluorine content in chemical fertilizer samples using the ultrasonic extraction-ion selective electrode method[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 775-781. |
[2] |
WANG Hui, FU Shu-Ji, GE Shuai-Yin, MA Fang-Yuan, SONG Bao-Jia, LUO Jing-Cheng. Development and performance tests of maintenance-free ultra-low noise solid nonpolarizing electrodes[J]. Geophysical and Geochemical Exploration, 2022, 46(3): 714-721. |
|
|
|
|