|
|
Relationship between concealed faults and radon concentration in plain areas of Beijing |
ZHANG Xiao-Liang1( ), BAI Ling-Yan1( ), NI Jing-Bo1, WANG Zhi-Hui2, ZHAO Yong1, HE Fu-Bing1 |
1. Beijing Institute of Geological Survey, Beijing 100195, China 2. SinoProbe Center, Chinese Academy of Geological Sciences,China Geological Survey,Beijing 100037, China |
|
|
Abstract Concealed faults are developed in the Beijing area. They intersect with NW- and NE-trending faults, forming a potential tectonic background of earthquakes in the future. To study the relationship between active faults and the radon concentration in soil, this study measured the radon concentration of two profiles (NW- and NE-trending) in plain areas of Beijing. Through tests and analysis, this study roughly ascertained the relationship between concealed structures and the radon concentration in soil, as well as the geological factors influencing the radon concentration of soil. The results show that the radon concentration in areas with active faults is significantly higher than that in the surrounding areas, and the radon concentration in areas with complex structure and highly active faults changes more noticeably. The depth of Cainozoic strata constrains the dissipation of radon to a certain extent, and there is a positive correlation between the depth of Cainozoic strata and the radon concentration in soil. The specific activity of radionuclides in parent rocks with different soil quality also affects the background value of regional radon concentration. The results of this study determined the relationship between concealed faults ahe specific activity of radionuclides in parent rocks with different soil quality also affect the background value of regional radon concentration. The results of this nd the radon concentration in soil and identified the influence of the thickness of Cainozoic strata and parent rocks with different soil quality on the radon concentration in soil, thus serving as an important reference and guidance for the surveys of concealed faults and the research on radon concentration in plain areas of Beijing in the future.
|
Received: 03 February 2021
Published: 28 June 2022
|
|
Corresponding Authors:
BAI Ling-Yan
E-mail: zxlddy@163.com;bly2030@126.com
|
|
|
|
|
Tectonic map of the study area
|
|
Survey line in the working area
|
测线编号 | 测点数 | 背景值/ (Bq·m-3) | 平均值/ (Bq·m-3) | 样本均方差/ (Bq·m-3) | 异常阈值/ (Bq·m-3) | 异常峰值/ (Bq·m-3) | 异常阈值/背景值 | 异常峰值/背景值 | D1(aa') | 141 | 1874 | 1920 | 1692 | 5304 | 10260 | 2.83 | 5.47 | D2(bb') | 93 | 752 | 771 | 662 | 2095 | 3132 | 2.78 | 4.16 |
|
Statistics of radon concentration changes in two profiles
|
|
Composite profile of radon concentration and geological in D1
|
剖面分区 | 背景值/ (Bq·m-3) | 平均值/ (Bq·m-3) | 均方差/ (Bq·m-3) | 异常阈值/ (Bq·m-3) | 异常点数 | 影响断裂 | I区 | 1793 | 1808 | 1234 | 4276 | 0 | | II区 | 2869 | 3024 | 2878 | 8780 | 2 | 顺义断裂 | III区 | 1482 | 1504 | 845 | 3194 | 3 | 南苑—通县断裂;北臧村断裂 | 全剖面 | 1874 | 1920 | 1692 | 5304 | 6 | 顺义断裂、孙河断裂、东坝断裂、楼梓庄断裂 |
|
Statistical of radon concentration variation in profiles D1(aa')
|
Fig.3) ">
|
Composite profile of radon concentration and geological in D2(the legend is the same as Fig.3)
|
剖面分区 | 背景值/ (Bq·m-3) | 平均值/ (Bq·m-3) | 均方差/ (Bq·m-3) | 异常阈值/ (Bq·m-3) | 异常点数 | 影响断裂 | 北京凹陷 | 598 | 640 | 543 | 1685 | 1 | 南苑—通县断裂 | 大兴隆起 | 820 | 875 | 714 | 2249 | 2 | 瀛海断裂、礼贤断裂 | 大厂凹陷 | 707 | 790 | 761 | 2230 | 2 | 夏垫断裂、东庄断裂 | 全剖面 | 752 | 771 | 1692 | 2095 | 6 | 永定河断裂、南苑—通县断裂、瀛海断裂、 礼贤断裂、夏垫断裂、东庄断裂 |
|
Statistical of radon concentration variation in profiles D2(bb')
|
土壤类型 | 氡、钍元素 | 扩散系数/ (10-2 cm·s-1) | 土质砂土 | 氡 | 3.3 | 干石英砂 | 氡 | 6.5 | 砂子(孔隙度40%) | 氡 | 4.5~7.0 | 砂质黏土 | 钍射气 | 3.5 | 壤土(天然产状下) | 氡 | 1.0~3.0 | 残积—坡积碎屑沉积物 | 氡 | 4.5 |
|
Dffusion coefficient about radon andthorium in different rocks
|
|
Histogram of different areas aboutnuclide specific activity
|
|
Histogram of different rocks about nuclide specific activity
|
[1] |
刘春来, 庹先国, 黄连美, 等. 地下氡气测量推断隐伏断层走向[J]. 物探与化探, 2011, 35(2):226-229.
|
[1] |
Liu C L, Tuo X G, Huang L M, et al. The deduction ofthe strike ofthe geological concealed fault based on underground radon measurement[J]. Geophysical and Geochemical Exploration, 2011, 35(2) :226-229.
|
[2] |
张晓亮, 方同明, 韩毅, 等. 关于北京市平原区测氡定位隐伏活动断裂的探讨[J]. 城市地质, 2013, 8(1):13-17.
|
[2] |
Zhang X L, Fang T M, Han Y, et al. Discussion on radon measurement locating the concealed active fractures in Beijing Plain area[J]. Urban Geology, 2013, 8(1): 13-17.
|
[3] |
汪成民, 李宣瑚. 我国断层气体测量在地震科学研究中的应用现状[J]. 中国地震, 1991, 7(2):21-32.
|
[3] |
Wang C M, Li X H. Applications of fracture-gas measurement tothe earthquake studies in China[J]. Earthquake Research in China, 1991, 7(2): 21-32.
|
[4] |
焦德成, 潘祖寿, 王增光, 等. 断层气测量用于银川地堑隐伏断裂活动性的研究[J]. 防灾减灾学报, 2012, 28(3):41-47.
|
[4] |
Jiao D C, Pan Z S, Wang Z G, et al. Research on buried faults’ activity of Yinchuan basin by using fault gas measurement[J]. Journal of Disaster Prevention and Reduction, 2012, 28(3): 41-47
|
[5] |
戴华林, 胡建平, 包乾宗, 等. 关于浅层地震勘探和测氡定位隐伏断裂的初步探讨[J]. 西安工程学院学报, 2001, 23(4):66-68.
|
[5] |
Dai H L, Hu J P, Bao Q Z, et al. Discussion on shallow seismic prospecting and radon survey in the potential faults[J]. Journal of Xi’an Engineering University, 2001, 23(4): 66-68.
|
[6] |
曾敏, 董好刚, 张宏鑫, 等. 土壤氡气测量在沙湾断裂带中的段隐伏断裂探测中的应用研究[J]. 地震研究, 2012, 35(3):347-352.
|
[6] |
Zeng M, Dong H G, Zhang H X, et al. Application research of soil radon measurement in concealed fault detection of middle segment of Shawan fault zone[J]. Journal of Seismological Research, 2012, 35(3): 347-352.
|
[7] |
杜建国, 宇文欣, 李圣强, 等. 八宝山断裂带逸出氡的地球化学特征及其映震效能[J]. 地震, 1998, 18(2):155-162.
|
[7] |
Du J G, Yu W X, Li S Q, et al. The geochemical characteristics of escaped radon from the Babaoshan fault zone and its earthquake reflecting effect[J]. Earthquake, 1998, 18(2): 155-162.
|
[8] |
王广才, 王基华, 刘成龙, 等. 福州市隐伏断层地球化学实验探测及研究[J]. 地震地质, 2002, 24(2):594-600.
|
[8] |
Wang G C, Wang J H, Liu C L, et al. A trial geochemical prospecting for buried active faults in Fuzhou City[J]. Seismology and Geology, 2002, 24(2): 594-600.
|
[9] |
周晓成, 郭文生, 杜建国, 等. 呼和浩特地区隐伏断裂土壤氡、汞地球化学特征[J]. 地震, 2007, 27(1):70-76.
|
[9] |
Zhou X C, Guo W S, Du J G, et al. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake, 2007, 27(1): 70-76.
|
[10] |
王秋良, 王恒希, 陈圆圆, 等. 土氡测量在城市断层探测中的应用[J]. 大地测量与地球动力学, 2010, 30(1):38-42.
|
[10] |
Wang Q L, Wang H X, Chen Y Y, et al. Application of soil radon measurement in urban fault surveying[J]. Journal of Geodesy and Geodynamics, 2010, 30(1): 38-42.
|
[11] |
黄秀铭, 汪良谋, 徐杰, 等. 北京地区新构造运动特征[J]. 地震地质, 1991, 13(1):43-51.
|
[11] |
Huang X M, Wang L M, Xu J, et al. Characteristics of neotectonic movement in Beijing area[J]. Seismology and Geology, 1991, 13(1): 43-51.
|
[12] |
章晔, 程业勋, 刘庆成, 等. 环境氡的来源于防治对策[J]. 物探与化探, 1999, 23(2):81-83.
|
[12] |
Zhang Y, Cheng Y X, Liu Q C, et al. Sources of environmental radon and countermeasures for its prevention and control[J]. Geophysical and Geochemical Exploration, 1999, 23(2): 81-83.
|
[13] |
刘汉彬, 范光. 民用建筑工程场地土壤氡浓度测量[J]. 世界核地质科学, 2004, 21(1):51-54.
|
[13] |
Liu H B, Fan G. The measurement of radon concentration of soil in a civil construction site[J]. World Nuclear Geoscience, 2004, 21(1): 51-54.
|
[14] |
王晓丽. 活断层上覆土壤盖层中氡气运移正演问题研究[D]. 长春: 吉林大学, 2007.
|
[14] |
Wang X L. A forward study of radon gas migration in soil overburden above active fault[D]. Changchun: Jilin University, 2007.
|
[15] |
徐仁崇, 桂苗苗, 彭军芝, 等. 厦门市土壤氡浓度水平及其分布规律调查[J]. 辐射防护, 2012, 32(2):125-128.
|
[15] |
Xu R C, Gui M M, Peng J Z, et al. Investigation on soil radon concentration levels and distribution in Xiamen[J]. Radiation Protection, 2012, 32(2): 125-128.
|
[16] |
杨斌. 南通市土壤放射性环境本底调查[J]. 中国辐射卫生, 2013, 22(2):198-200.
|
[16] |
Yang B. Survey on the background of soil radioactive environment in Nantong[J]. Chinese Journal of Radiological Health, 2013, 22(2): 198-200.
|
[17] |
王志成. 土氡测量在海口市活断层探测中的初步应用[J]. 华南地震, 2006, 26(4):61-66.
|
[17] |
Wang Z C. Preliminary application of soil radon measurement method in active fault survey in Haikou City[J]. South China Journal of Seismology, 2006, 26(4): 61-66.
|
[18] |
Gao M L, G H L, Chen B B, et al. InSAR time-series investigation of long-term ground displacement at Bejing Capital International Airport,China[J]. Tectonophysics, 2016, 691: 271-281.
|
[19] |
陆丽娜. 土壤气汞探测在夏垫断裂带的应用研究[J]. 地质与勘探, 2018, 54(1):112-120.
|
[19] |
Lu L N. The application of soil-gas mercury detection to the Xiadian fault zone[J]. Geology and Exploration, 2018, 54(1): 112-120.
|
[20] |
陈华英. 泉州市、晋江市土壤中氡气浓度与地质背景的关系[J]. 物探与化探, 2009, 33(2):186-189.
|
[20] |
Chen H Y. The relationship between radon gas concentration and geological background of Quanzhou City and Jinjiang City[J]. Geophysical and Geochemical Exploration, 2009, 33(2): 186-189.
|
[1] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
[2] |
WANG Liang, LONG Xia, WANG Ting-Ting, XI Zhen-Zhu, CHEN Xing-Pen, ZHONG Ming-Feng, DONG Zhi-Qiang. Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1289-1295. |
|
|
|
|