|
|
Distribution characteristics, migration transformation and influencing factors of Ge in soil-rice system in Shuangyang River Basin, Heilongjiang Province |
Liang Shuai1,2,3( ), Dai Hui-Min1,2,3( ), Zhao Jun4, Liu Guo-Dong1,2,3, Liu Kai1,2,3, Zhai Fu-Rong5, Han Xiao-Meng1,2,3, Wei Ming-Hui1,2,3, Zhang Zhe-Huan1,2,3 |
1. Shenyang Geological Survey Center, China Geological Survey, Shenyang 110034 2. Key Laboratory of Black Soil Evolution and Ecological Effects, Ministry of Natural Resources, Shenyang 110034 3. Key Laboratory of Black Soil Evolution and Ecological Effects, Liaoning Province, Shenyang 110034 4. Xi’an Geological Survey Center, China Geological Survey, Xi’an 110034 5. Liaoning Institute of Geology and Mineral Resources Co., Ltd., Shenyang 110034 |
|
|
Abstract Soil germanium natural endowment, genesis sources, ecological and environmental effects and human health assessment are important research directions in the ecological geology of black soil, and the quantitative study of germanium distribution characteristics, migration transformation and influencing factors in the soil-rice human system is of great significance to the development of germanium-rich agricultural products and human health in black soil areas. Based on the 1∶50,000 ecogeochemical survey of land quality in the Shuangyang River Basin, we obtained germanium and other elemental data from multi-media such as soil-forming parent material, top soil, rice seeds, root soil and human hair, and used GIS and SPSS software to statistically analyze the data. The results showed that the germanium content of the top soil ranged from 0.996×10-6 to 1.626×10-6, with an average value of 1.326×10-6, and the high value areas were mainly distributed in the northwest and central south of the north side of Shuangyang River; 70.55 km2 and 166.9 km2 of germanium-rich and germanium-sufficient arable land were delineated, which had a greater potential for developing green germanium-rich and selenium-rich agricultural products. Soil-forming parent material is the main factor affecting the germanium content of topsoil, and soil type and land use type have less influence; soil environment with acidic and organic matter deficiency may be more favorable for germanium enrichment. The germanium content of rice seeds ranged from 0.24×10-6 to 3.40×10-6, with a mean value of 1.59×10-6, and the samples meeting the moderate and strong uptake criteria accounted for 40% and 60%, respectively, and were at significantly germanium-rich levels. The germanium uptake coefficient (Ax)was significantly negatively correlated with the root soil germanium content (p=-0.34*), indicating that low concentrations of soil germanium have a promoting effect on rice growth and development, and high concentrations of germanium have an inhibitory or toxic effect on rice growth; it was positively correlated with the root soil pH (p=0.40), indicating that the migration and transformation ability of rice to germanium elements gradually increases with the increase of soil pH. Adult hair germanium levels were at normal healthy levels, but germanium levels in immature female hair significantly exceeded the reference range, and more detailed studies are needed for human health assessment.
|
Received: 08 February 2022
Published: 03 January 2023
|
|
Corresponding Authors:
Dai Hui-Min
E-mail: ls476476@163.com;daihuimin78@126.com
|
|
|
|
|
Regional geological overview of the study area
|
|
Map of soil types and ecological sample collection points
|
指标 | 检出限/10-6 | 分析方法 | 指标 | 检出限/10-6 | 分析方法 | As | 0.5 | AFS | Zn | 0.6 | XRF | B | 1 | AES | Si | 0.05 | XRF | Cd | 0.02 | ICP-MS | Al2 | 0.02 | ICP-OES | Cr | 0.90 | ICP-MS | TFe2 | 0.02 | XRF | Cu | 0.29 | ICP-MS | CaO* | 0.03 | XRF | Hg | 0.0003 | CV-AFS | MgO* | 0.03 | XRF | Mn | 4 | XRF | Na2O* | 0.03 | XRF | Mo | 0.06 | ICP-MS | K2O* | 0.02 | ICP-OES | N | 19 | VOL | Ge | 0.059 | ICP-MS | Ni | 0.80 | XRF | Se | 0.01 | AFS | P | 6 | XRF | pH | 0.10 | ISE | Pb | 0.3 | ICP-MS | Corg* | 0.03 | VOL |
|
Elemental analysis methods and detection limits
|
范围 | 样本数 | 平均值/ 10-6 | 最小值/ 10-6 | 25%分位数/ 10-6 | 中值/ 10-6 | 75%分位数/ 10-6 | 最大值/ 10-6 | 标准差/ 10-6 | 变异系数 | pH | 研究区 | 2746 | 1.326 | 0.996 | 1.264 | 1.332 | 1.396 | 1.626 | 0.104 | 0.08 | 6.96 | 黑龙江[4] | 52 | 1.600 | 0.700 | 1.500 | 1.600 | 1.800 | 2.200 | 0.150 | | |
|
Statistics of germanium geochemical parameters in surface soil
|
|
Distribution map of soil germanium geochemical grades
|
|
Distribution map of germanium-rich arable and germanium-sufficiency land
|
|
Projection map of germanium content in soil profile
|
土壤 类型 | 锗含量/10-6 | 标准 离差 | 变异 系数 | 样品 数 | 最小 值 | 中位 数 | 最大 值 | 算术 平均值 | 黑土 | 1.00 | 1.35 | 1.63 | 1.35 | 0.10 | 0.07 | 1116 | 黑钙土 | 1.02 | 1.34 | 1.58 | 1.33 | 0.10 | 0.08 | 491 | 草甸土 | 1.00 | 1.30 | 1.59 | 1.30 | 0.11 | 0.08 | 1186 |
|
Ge content characteristics of different soil types in the study area
|
土壤利 用方式 | 锗含量/10-6 | 标准 偏差 | 变异 系数 | 样品 数 | 最小 值 | 中位 数 | 最大 值 | 算术 平均值 | 旱田 | 1.00 | 1.33 | 1.63 | 1.32 | 0.10 | 0.08 | 2163 | 水田 | 1.11 | 1.32 | 1.45 | 1.30 | 0.14 | 0.11 | 177 | 林地 | 1.00 | 1.32 | 1.56 | 1.31 | 0.11 | 0.08 | 198 | 草地 | 1.08 | 1.28 | 1.58 | 1.28 | 0.11 | 0.09 | 81 |
|
Ge content characteristics of different soil types in the study area
|
指标 | 相关系数 | 指标 | 相关系数 | 指标 | 相关系数 | SiO2 | 0.469** | As | 0.336** | B | 0.088** | Al2O3 | 0.564** | Cd | -0.023 | F | -0.096** | TFe2O3 | 0.539** | Cr | 0.373** | I | 0.196** | CaO | -0.549** | Cu | 0.152** | Mn | 0.359** | MgO | -0.341** | Hg | 0.090** | Mo | 0.353** | Na2O | 0.166** | Ni | 0.407** | S | -0.514** | K2O | 0.227** | Pb | 0.452** | pH | -0.519** | | | Zn | 0.229** | Corg | -0.391** |
|
Correlation statistics of soil germanium content and soil physicochemical indexes
|
指标 | 最小值 | 平均值 | 中位数 | 最大值 | 标准偏差 | 变异系数 | 黑龙江土壤背景值[4] | Ge | 0.99 | 1.31 | 1.31 | 1.69 | 0.17 | 0.13 | 1.30 | Se | 0.14 | 0.26 | 0.26 | 0.43 | 0.05 | 0.04 | 0.20 | SiO2 | 49.66 | 60.60 | 60.93 | 65.41 | 2.98 | 0.05 | 59.9 | Al2O3 | 11.06 | 13.53 | 13.51 | 15.04 | 0.83 | 0.06 | 6.62 | TFe2O3 | 3.60 | 4.67 | 4.64 | 5.84 | 0.48 | 0.10 | 2.94 | CaO | 1.63 | 4.09 | 3.35 | 12.06 | 2.16 | 0.53 | 1.54 | MgO | 1.06 | 1.48 | 1.51 | 1.85 | 0.14 | 0.09 | 0.78 | K2O | 1.90 | 2.37 | 2.39 | 2.60 | 0.15 | 0.06 | 0.99 | Na2O | 1.15 | 1.52 | 1.52 | 1.95 | 0.16 | 0.11 | 1.02 | As | 6.80 | 9.93 | 9.69 | 15.10 | 1.55 | 0.16 | 7.30 | Cd | 0.04 | 0.12 | 0.11 | 0.25 | 0.04 | 0.38 | 0.09 | Cr | 48.10 | 64.08 | 64.40 | 78.40 | 6.65 | 0.10 | 58.6 | Cu | 17.70 | 23.85 | 23.70 | 30.00 | 2.84 | 0.12 | 20.0 | Hg | 0.01 | 0.02 | 0.02 | 0.04 | 0.01 | 0.27 | 0.04 | Ni | 20.90 | 28.87 | 28.76 | 35.93 | 3.54 | 0.12 | 22.8 | Pb | 14.30 | 21.89 | 22.20 | 26.30 | 2.44 | 0.11 | 24.2 | Zn | 49.22 | 65.97 | 64.74 | 85.50 | 7.29 | 0.11 | 70.7 | Mo | 0.39 | 0.53 | 0.53 | 0.75 | 0.08 | 0.16 | 1.80 | N | 1733.7 | 2918.8 | 2922.5 | 4387.7 | 575.1 | 0.20 | 2215 | P | 764.0 | 1012.4 | 1005.0 | 1331.0 | 109.27 | 0.11 | 747 | pH | 6.07 | 7.96 | 8.06 | 8.77 | 0.45 | 0.06 | 6.60 | Corg | 1.91 | 3.22 | 3.22 | 4.91 | 0.62 | 0.19 | 2.41 |
|
Statistics of some elemental geochemical parameters of 61 rice root soil
|
元素 | 最小值 | 平均值 | 中位数 | 最大值 | 标准偏差 | 变异 系数 | Ge | 0.24 | 1.59 | 1.59 | 3.40 | 0.73 | 0.46 | Se | 0.02 | 0.03 | 0.03 | 0.06 | 0.01 | 0.20 | Cu | 0.87 | 1.69 | 1.73 | 3.62 | 0.54 | 0.32 | Zn | 6.98 | 12.16 | 11.92 | 19.18 | 1.98 | 0.16 | Mo | 0.10 | 0.25 | 0.24 | 0.51 | 0.10 | 0.39 |
|
Statistics of some elemental geochemical parameters of 61 rice seeds
|
|
Comparison of distribution of germanium content in rice root soil and seeds
|
元素 | Ge | K2O | CaO | Na2O | MgO | Al2O3 | SiO2 | TFe2O3 | S | Corg | pH | 相关系数 | -0.34 | -0.05 | 2.49 | 0.03 | -0.10 | -0.03 | -0.01 | 0.03 | -0.07 | 0.11 | 0.40 | 元素 | Se | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | B | Mo | 相关系数 | 0.16 | 0.13 | 0.21 | -0.04 | -0.02 | 0.04 | -0.08 | -0.05 | 0.02 | 0.02 | -0.10 |
|
Correlation statistics of germanium absorption coefficient of rice and physical and chemical indexes of root soil
|
性别/年龄 | 样本 | 最小值 | 平均值 | 最大值 | 标准差 | CV/% | 参考值1[35] | 参考值2[36] | 女/未成年 | 6 | 1.826 | 5.927 | 9.227 | 2.643 | 44.59 | 0.10~4.48 | | 女/成年 | 19 | 1.084 | 2.542 | 5.805 | 1.599 | 62.90 | 0.41~5.69 | 2.2 | 男/未成年 | 3 | 1.519 | 1.762 | 2.175 | 0.359 | 20.37 | 0.12~4.56 | (0.9~3.7) | 男/成年 | 4 | 2.161 | 3.186 | 4.044 | 0.853 | 26.77 | 0.34~5.81 | |
|
Germanium content in human hair10-6
|
[1] |
Murnane K J, Stallard R F. Germanium and silicon in rivers of the Orinoco drainage basin[J]. Nature, 1999, 344(19):749-752.
|
[2] |
Bernstein L R. Germanium geochemistry and mineralogy[J]. Geuchimica et Cosmochimica Acta, 2018, 49:2409-2422.
|
[3] |
中国科学院地球化学研究所. 高等地球化学[M]. 北京: 科学出版社, 1998:38.
|
[3] |
Institute of Geochemistry, Chinese Academy of Sciences. Advanced geochemistry[M]. Beijing: Science Press, 1998: 38.
|
[4] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
|
[4] |
China Environmental Monitoring Station. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
|
[5] |
鄢明才, 顾铁新, 迟清华, 等. 中国土壤化学元素丰度与表生地球化学特征[J]. 物探与化探, 1997, 21(3):161-167.
|
[5] |
Yan M C, Gu T X, Chi Q H, et al. Abundance of chemical elements of soils in china and supergenesis geochemistry characteristics[J]. Geophysical and Geochemical Exploration, 1997, 21(3): 161-167.
|
[6] |
杨利, 黄仁录. 锗与人体健康[J]. 微量元素与健康研究, 2005, 22(3):60-61.
|
[6] |
Yang L, Huang R L. Germanium and human health[J]. Research on Trace Elements and Health, 2005, 22(3): 60-61.
|
[7] |
李景岩. 有机锗与人体健康[J]. 现代预防医学, 2007, 34(13):2465-2467.
|
[7] |
Li J Y. Organic germanium and human health[J]. Modern Preventive Medicine, 2007, 34(13): 2465-2467.
|
[8] |
赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 41(4):642-651.
|
[8] |
Zhao J, Rao Z, Wang P, et al. Geochemical characteristics and influencing factors of germanium-enriched soils in Nehe City, Heilongjiang Province[J]. Rock and Mineral Analysis, 2022, 41(4) :642-651.
|
[9] |
夏伟, 段碧辉, 王天一, 等. 恩施州咸丰县土壤—水稻系统锗元素迁移转化及影响因素[J]. 西南农业学报, 2021, 34(12):2748-2756.
|
[9] |
Xia W, Duan B H, Wang T Y, et al. Germanium transfer and its influencing factors in soil-rice system in Xianfeng County,Enshi Prefecture[J]. Southwest Agricultural Journal, 2021, 34(12):2748-2756.
|
[10] |
刘道荣, 周漪, 侯建国, 等. 大田生产条件下锗在土壤-水稻系统中的迁移累积[J]. 中国土壤与肥料, 2020(3):133-137.
|
[10] |
Liu D R, Zhou Y, Hou J G, et al. Translocation and accumulation of germanium in soil-rice system under field conditions[J]. China Soil and Fertilizer, 2020(3):133-137.
|
[11] |
余飞, 贾中民, 李武斌, 等. 锗在土壤—水稻系统的迁移累积及其影响因素[J]. 三峡生态环境监测, 2018, 3(1):66-74.
|
[11] |
Yu F, Jia Z M, Li W B, et al. Translocation and accumulation of germanium in paddy soil-rice plant system[J]. Three Gorges Ecological Environment Monitoring, 2018, 3(1): 66-74.
|
[12] |
段轶仁, 杨忠芳, 杨琼, 等. 广西北部湾地区土壤锗分布特征及其影响因素及其生态环境评价[J]. 中国地质, 2020, 47(6):1826-1837.
|
[12] |
Duan Y R, Yang Z F, Yang Q, et al. The distribution, influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. Geology in China, 2020, 47(6):1826-1837.
|
[13] |
梁帅, 朱建新, 戴慧敏, 等. 黑龙江拜泉地区硒元素在土壤原植物系统中的迁移富集规律[J]. 地质与资源, 2021, 30(4):456-465.
|
[13] |
Liang S, Zhu J X, Dai H M, et al. Migration and enrichment of selenium in soil-plant system in baiquan area,heilongjiang province[J]. Geology and Resources, 2021, 30(4):456-465.
|
[14] |
汤彦辉, 程岩, 孙玉龙, 等. 黑龙江省拜泉县耕地地力评价[M]. 北京: 中国农业科学技术出版社, 2016.
|
[14] |
Tang Y H, Cheng Y, Sun Y L, et al. Evaluation of cultivated land in Baiquan County, Heilongjiang Province[M]. Beijing: China Agricultural Science and Technology Press, 2016.
|
[15] |
李光辉, 崔玉军, 张立, 等. 富锗土壤评价技术要求[M]. 哈尔滨: 黑龙江省市场监督管理局, 2019.
|
[15] |
Li G H, Cui Y J, Zhang L, et al. Technical requirements for germanium-rich soil evaluation[M]. Harbin: Heilongjiang Provincial Administration for Market Regulation, 2019.
|
[16] |
余飞, 张永文, 王宇, 等. 重庆典型农业区富锗土壤分布特征及影响因素[J]. 地质与资源, 2021, 30(5):609-616.
|
[16] |
Yu F, Zhang Y W, Wang Y, et al. Distribution characteristics and influencing factors of germanium-rich soil in typical agricultural area of chongqing municipality[J]. Geology and Resources, 2021, 30(5):609-616.
|
[17] |
刘道荣. 浙江常山县表层土壤锗地球化学特征及影响因素[J]. 现代地质, 2020, 34(1):97-104.
|
[17] |
Liu D R. Geochemical characteristics and influencing factors of germanium in surface soil of Changshan County, Zhejiang Province[J]. Modern Geology, 2020, 34(1): 97-104.
|
[18] |
游桂芝, 鲍大忠, 李丕鹏. 贵州安龙县耕地土壤富锗含量特征及成因探讨[J]. 贵州大学学报:自然科学版, 2020, 37(5):35-39.
|
[18] |
You G Z, Bao D Z, Li P P. Germanium content characteristics and cause of germanium-rich soil in Anlong County,Guizhou Province[J]. Journal of Guizhou University:Natural Science Edition, 2020, 37(5): 35-39.
|
[19] |
夏伟, 段碧辉, 王天一, 等. 恩施州咸丰县土壤—水稻系统锗元素迁移转化及影响因素[J]. 西南农业学报, 2021, 34(12):2748-2756.
|
[19] |
Xia W, Duan B H, Wang T Y, et al. Germanium transfer and its influencing factors in soil-rice system in Xianfeng County,Enshi Prefecture[J]. Southwest Agricultural Journal, 2021, 34(12): 2748-2756.
|
[20] |
Adriano D C, Chino M. Biogeochemical aspects of lead, germanium and tin[J]. Main Group Metal Chemistry, 1994, 17:1-4.
|
[21] |
代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学特征及污染评价[J]. 中国地质, 2011, 38(5):1387-1395.
|
[21] |
Dai J R, Pang X G, Yu C, et al. Geochemical features and contamination assessment of soil elements in east Shandong Province[J]. China Geology, 2011, 38(5): 1387-1395.
|
[22] |
Kurtz A C, Derry L A, Chadwick O A. Germanium-silicon fractionation in the weathering environment[J]. Geochimica et Cosmochimica Acta, 2002, 66(9):1525-1537.
|
[23] |
Lugolobi F, Kurtz A C, Derry L A. Germanium-silicon fractionation in a tropical, granitic weathering environment[J]. Geochimica et Cosmochimica Acta, 2010, 4(74): 1294-1308.
|
[24] |
Scribner A M, Kurtz A C, Chadwick O A. Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides[J]. Earth & Planetary Science Letters, 2006,3- 4(243): 760-770.
|
[25] |
Pokrovsky O S, Galy A, Schott J, et al. Germanium isotope fractionation during Ge adsorption on goethiteand its coprecipitation with Fe oxy(hydr)oxides[J]. Geochimica et Cosmochimica Acta, 2014, 5(131): 138-149.
|
[26] |
李明堂. 锗在土壤—水稻体系内迁移和积累规律的研究[D]. 长春: 吉林农业大学, 2002.
|
[26] |
Li M T. Study on the migration and accumulation of germanium in soil-rice system[D]. Changchun: Jilin Agricultural University, 2002.
|
[27] |
Yang J T, Jwang J F, Liao X Y, et al. Chain modeling for the biogeochemical nexus of cadmium in soil-rice-human health system[J]. Environment International, 2022, 167:107424-407433.
|
[28] |
李明堂, 张月, 赵晓松. 锗在土壤—水稻系统内的迁移和积累规律[J]. 农业环境科学学报, 2007, 26(1):126-129.
|
[28] |
Li M T, Zhang Y, Zhao X S. Migration and accumulation of germanium in soil-rice system[J]. Journal of Agricultural and Environmental Sciences, 2007, 26(1): 126-129.
|
[29] |
Kiyoshi T, Ko-Ling Y. Soil science and plant nutrition[J]. Soil Science and Plant Nutrition, 1972, 18(5):173-178.
|
[30] |
Oliver W, Balázs S, Christin M, et al. Germanium in the soil-plant system:A review[J]. Environmental Science and Pollution Research, 2018, 25(32): 31938-31956.
|
[31] |
Philippe N, Anna L, Clemens R, et al. Gemas:Source, distribution patterns and geochemical behavior of Ge in agricultural and grazing land soils at European Continental Scale[J]. Applied Geochemistry, 2016, 72:113-124.
|
[32] |
李桂珠, 赵丽丽. 金属锗在水稻体内的植物化研究[J]. 安徽农业科学, 2008, 36(22):9434-9435.
|
[32] |
Li G Z, Zhao L L. Phytochemical study of metal germanium in rice[J]. Anhui Agricultural Sciences, 2008, 36(22): 9434-9435.
|
[33] |
Fan B L, Tang M L, Yao L Y, et al. Germanium fractions in typical paddy soil and its interaction with humic substances[J]. Environmental Science and Pollution Research, 2020, 28:9670-9681.
|
[34] |
李青仁, 李会, 岳春月, 等. 微量元素锗与人体健康[J]. 世界元素医学, 2008, 15(3):21-23.
|
[34] |
Li Q R, Li H, Yue C Y, et al. Trace element germanium and human health[J]. World Elemental Medicine, 2008, 15(3): 21-23.
|
[35] |
T/GDWJ 003—2020人体头发中38种微量元素健康评价阈值[S]. 广东省卫生经济学会, 2020.
|
[35] |
T/GDWJ 003—2020 Thresholds for health evaluation of 38 trace elements in human hair[S]. Guangdong Health Economics Association, 2020.
|
[36] |
廖昌园, 王春红, 陈彬. 营养与健康[M]. 北京: 新华出版社, 2003:104.
|
[36] |
Liao C Y, Wang C H, Chen B. Nutrition and health[M]. Beijing: Xinhua Press, 2003: 104.
|
|
|
|