|
|
Design and application of the ultrasonic imaging logging system for deep carbonate geothermal reservoirs |
ZHANG Jian-Wei1,2( ), YANG Zhuo-Jing1( ), WANG Xin-Jie1,2, LI Sheng-Tao1, ZHAO Yu-Jun1 |
1. Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding 071051, China 2. Innovation Centre of Geological Environment Monitoring Engineering Technology, Ministry of Natural Resources, Baoding 071051, China |
|
|
Abstract Geothermal resources are widely distributed in the Beijing-Tianjin-Hebei region and the Xiong'an New Area and are mainly characterized by deep carbonate geothermal reservoirs. To achieve stable and increased production of geothermal reservoirs, it is effective to detect and evaluate the fracture parameters of reservoirs and analyze the distribution patterns of tectonic fractures in underground rock masses using the ultrasonic imaging logging technique. Targeting the high-temperature and high-pressure environment of deep carbonate geothermal reservoirs, this study developed an ultrasonic imaging logging system, which can be used under the conditions of well depth greater than 4,000 m, well diameter of 150~500 mm, temperature greater than 110℃, continuous operating time greater than 12 h, and pixels per meter of a geological well greater than 50,000. The equipment of this ultrasonic imaging logging system has been tested in well D22 in Xiong'an New Area. The test results show that the developed ultrasonic imaging logging system has a clear imaging effect and high identification degree of fractures and that its various performance indicators are comparable to those of advanced foreign equipment. Therefore, this system can provide an efficient technical method for identifying fractures and fractured zones and analyzing the occurrence of deep carbonate geothermal reservoirs.
|
Received: 16 February 2022
Published: 03 January 2023
|
|
Corresponding Authors:
YANG Zhuo-Jing
E-mail: chegs_jianwei@st.btbu.edu.cn;277357053@qq.com
|
|
|
|
|
Schematic diagram of the logging system 1—technical vehicle for logging; 2—well logging ground control system;3—well logging armoured cable; 4—derrick; 5—ultrasonic imaging logging sensor; 6—wellhead
|
|
Schematic diagram of the ultrasound imaging logging sensor 1—sound image assembly unit;2—position monitoring unit;3—information acquisition and processing unit;4—data transmission unit; 5—DC power unit;6—electric connector;7—stainless steel housing;8—casing centralizer
|
|
Schematic diagram of the information acquisition and processing unit
|
序号 | 参数 | 参数值 | 1 | 换能器频率 | 0.8~1.2 MHz(可调) | 2 | 方位精度 | ±1° | 3 | 单圈成像扫描点数 | 300 | 4 | 扫描速率 | 5 r/ s | 5 | 测井速度 | 0~6 m/min(可调) | 6 | 纵向分辨率 | 10 mm |
|
Main technical parameters of the ultrasonic imaging device
|
|
The first logging image of the repetitive test
|
|
The second logging image of the repetitive test
|
序号 | 参数 | 参数值 | 1 | 密度 | 1.07 g/ cm3 | 2 | 漏斗黏度 | 32 s | 3 | 失水量 | 6 mL/30 min | 4 | 泥饼厚度 | 0.6 mm | 5 | 含砂量 | 0.7% | 6 | pH值 | 9 |
|
Drilling fluid parameters
|
|
A logging image fragment of well D22
|
|
Comprehensive display diagram of the crack form
|
|
Statistics diagram of crack number
|
|
Core fragment of well D22(3 153.59~3 157.49 m)
|
|
A logging image fragment of well D22
|
[1] |
吴爱民, 马峰, 王贵玲, 等. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 2018, 39(5): 523-532.
|
[1] |
Wu A M, Ma F, Wang G L, et al. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan New Area[J]. Acta Geoscientica Sinica, 2018, 39(5): 523-532.
|
[2] |
白青清, 田林, 吕欣萍, 等. 容城—牛驼镇凸起碳酸盐岩层地热开发小微断裂探究[J]. 城市建设理论研究:电子版, 2020 (11): 39-40.
|
[2] |
Bai Q Q, Tian L, Lu X P, et al. Exploration of small and micro fracture of geothermal development of raised carbonate layer in Rongcheng-Niutuo Town[J]. Theoretical Study on Urban Construction:Electronic Edition, 2020 (11): 39-40.
|
[3] |
刘东明, 林振洲, 高文利, 等. 藏南泽当科学钻探ZDSD-1孔超声成像测井解释[J]. 物探与化探, 2017, 41(4):672-677.
|
[3] |
Liu D M, Lin Z Z, Gao W L, et al. Interpretation of ultrasonic imaging logging data obtained in Drill Hole ZDSD-1 of the Zedang Scientific Drilling in Tibet[J]. Geophysical and Geochemical Exploration, 2017, 41(4):672-677.
|
[4] |
涂善波, 郭良春, 姜文龙. 基于成像测井技术的地下岩体裂隙分布规律预测研究[J]. 河南水利与南水北调, 2019, 48(1):83-85.
|
[4] |
Tu S B, Guo L C, Jiang W L. Study on crack distribution of underground rock mass based on imaging logging[J]. Henan Water Resources and South-to-North Water Diversion, 2019, 48(1):83-85.
|
[5] |
朱文娟. 成像测井资料在裂缝识别中的应用[J]. 石油仪器, 2009, 23(3):45-47,101.
|
[5] |
Zhu W J. Application of imaging logging data in crack identification[J]. Petroleum Tubular Goods & Instruments, 2009, 23(3):45-47,101.
|
[6] |
夏琼. 基于超声波技术的井壁成像系统设计[J]. 化工管理, 2018(24):65.
|
[6] |
Xia Q. Design of well wall imaging system based on ultrasonic technology[J]. Chemical Enterprise Management, 2018(24):65.
|
[7] |
付青青. 超声成像测井图像增强和复原方法研究[D]. 荆州: 长江大学, 2020.
|
[7] |
Fu Q Q. Research of enhancement and restoration method for ultrasonic logging images[D]. Jingzhou: Changjiang University, 2020.
|
[8] |
冯延强, 乔宝强, 焦仓文, 等. CS404小口径超声成像测井探管研制[J]. 铀矿地质, 2020, 36(1):46-51.
|
[8] |
Feng Y Q, Qiao B Q, Jiao C W, et al. CS404 development of small caliber ultrasonic imaging logging tube[J]. Uranium Geology, 2020, 36(1):46-51.
|
[9] |
占志鹏. 井周超声成像仪主控系统设计[D]. 成都: 电子科技大学, 2020.
|
[9] |
Zhan Z P. Design of main control system for circumferential borehole ultrasonic imaging tool[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
[10] |
方志强, 付桂翠, 高泽溪. 电子设备热分析软件应用研究[J]. 北京航空航天大学学报, 2003(8):737-740.
|
[10] |
Fang Z Q, Fu G C, Gao Z X. Application research on thermal analysis software of electronic systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003(8):737-740.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
|
|
|
|