|
|
Relationships between thermal structure characteristics and mineralization of the Xiangshan uranium ore field:A case study of the Zoujiashan deposit |
YIN Yong-Bing1,2( ), LI Hai-Ying3, LU Teng1,2, HAN Piao-Ping1,2, KONG De-Xu1,2, WAN Huan-Huan1,2, PANG Wen-Jing1,2, WU Zhi-Chun4 |
1. Nuclear Geology Brigade of Jiangxi Geological Bureau, Yingtan 335001, China 2. Jiangxi Energy and Mineral Geological Survey and Research Institute, Nanchang 330100, China 3. Mineral Exploration Institute of Jiangxi Geological Survey and Exploration Institute, Nanchang 330038, China 4. East China University of Technology, Nanchang 330000, China |
|
|
Abstract The Xiangshan ore field is the largest volcanogenic uranium ore field in China with abundant uranium resources and favorable geothermal geological conditions. However, few studies have been conducted on its thermal structure and mineralization characteristics,In order to solve this problem effectively. Taking the Zoujiashan super-large uranium deposit in the west of the ore field as a typical area, this study systematically investigated the thermal structure characteristics of the ore field, established the thermal structure model, and analyzed the relationships between heat generation and mineralization. The results are as follows. The thermal structure in the study area is of the hot-mantle and cold-crust type, which is in line with the characteristics of thermal structures in eastern China. The higher crustal heat flow in the area is closely related to the uranium source and uranium ore bodies, and the decay heat generation of radionuclides is the main source of the crustal heat flow. The thermal anomalies in the area are obviously controlled by faults, and the heat source is highly consistent with the uranium source. The geothermal gradient anomalies are one of the prospecting criteria of the area. Moreover, 4 ℃/100 m is the positioning marker of deposits, and the variation amplitude of geothermal gradients can be used as the positioning marker of rich and large ore bodies. This study provides effective technical support for the study of geothermal geology and metallogenic geology in this area.
|
Received: 26 January 2022
Published: 03 January 2023
|
|
|
|
|
|
Geological background and terrestrial heat flow distribution map of Xiangshan ore field
|
序号 | 地层代号 | 深度范围/m | 地温梯度/ (℃·km-1) | 热导率/ (W·m-1·K-1) | 实测热流值/ (mW·m-2) | 校正热流值/ (mW·m-2) | 资料来源 | 1 | K1e2 | 100~260 | 20.17±0.8 | 3.25±0.2 | 65.6 | — | | 周文斌等,1992[9] | 2 | K1d2 | 280~370 | 22.00±1.7 | 3.23±0.1 | 71.2 | 67.6 | | 3 | K1e2 | 100~300 | 26.84±1.1 | 3.02 | 101.0 | 83.5 | | 4 | K1e2 | 320~430 | 25.90±1.7 | 3.02 | 78.0 | 68.7 | | 5 | K1e2 | 440~940 | 32.20±1.4 | 3.14±0.2 | 101.0 | 81.0 | |
|
Statistical table of regional terrestrial heat flow
|
|
Plane contour map of geotemperature gradient of Zoujiashan deposit
|
结构层 | 顶界面深度/km | 底界面深度/km | Di/km | Vp/(km·s-1) | Ai/(μW·m-3) | qi/(mW·m-2) | 热流值/(mW·m-2) | 地表 | — | — | — | — | — | — | 83.50(q0) | 上地壳 | 0 | 0.89 | 0.89 | — | 4.39 | 3.91 | 79.59 | 0.89 | 1.46 | 0.57 | — | 3.68 | 2.10 | 77.49 | 1.46 | 6.12 | 4.66 | — | 1.51 | 7.04 | 70.45 | 中地壳 | 6.12 | 10.83 | 4.71 | 5.92 | 1.32 | 6.22 | 64.23 | 10.83 | 13.89 | 3.06 | 6.07 | 0.88 | 2.69 | 61.54 | 13.89 | 16.69 | 2.80 | 6.09 | 0.83 | 2.32 | 59.22 | 16.69 | 22.74 | 6.05 | 6.10 | 0.81 | 4.90 | 54.32 | 下地壳 | 22.74 | 33.00 | 10.26 | 6.21 | 0.60 | 6.16 | 48.16 |
|
Calculation table of lithospheric thermal structure in the study area
|
|
Heat generation rate model and thermal structure characteristics of the deposit
|
|
Plane projection of ground temperature and ore body in the study area
|
|
Profile of relationship between ground temperature and ore body in the study area 1—lower Cretaceous ehuling formation porphyry lava; 2—rhyolitic dacite of daguding formation in lower Cretaceous; 3—fault structure; 4—stratigraphic boundary; 5—industrial ore body; 6—geothermal isoline(℃); 7 —alteration zone range; 8—drill hole
|
[1] |
Blackwell D D. The thermal structure of the continent crust[M]. Washington D C: AGU, 1971.
|
[2] |
Birch F, Roy R F, Decker E R. Heat flow and thermal history in New Englang and New York[J]. Studies of Appalachian Geology, 1968:437-451.
|
[3] |
汪集旸, 汪缉安. 辽河裂谷盆地地壳上地幔热结构[J]. 中国科学:B辑, 1986(8):856-866.
|
[3] |
Wang J Y, Wang J A. Thermal structure of crust and upper mantle in liaohe rift basin[J]. Science China :Part B, 1986(8):856-866.
|
[4] |
李学礼. 江西温泉成因与铀矿化关系研究[J]. 华东地质学院学报, 1992(3):201-220.
|
[4] |
Li X L. Study on the relationship between the genesis of hot springs and uranium mineralization in Jiangxi[J]. Journal of East China University of Geosciences, 1992(3):201-220.
|
[5] |
Hillis R, Hand M, Mildren S, et al. Genetically related Mo-Bi-Ag and U-F mineralization in A-type granite,Gabal Gattar,Eastern Desert,Egypt[J]. Ore Geology Reviews, 2004, 62:181-190.
|
[6] |
李庆阳, 蔡惠蓉, 陈彦. 地热场与深部铀矿的关系研究及应用[J]. 中国地质, 2010, 37(1):198-203.
|
[6] |
Li Q Y, Cai H R, Chen Y. Study on the relationship between geothermal field and deep uranium deposit and its application[J]. Geology of China, 2010, 37(1):198-203.
|
[7] |
王俊虎, 张杰林, 王丽娟. ASTER 热红外影像温度反演及其应用[J]. 金属矿山, 2011, 40(6):319-322.
|
[7] |
Wang J H, Zhang J L, Wang L J. Aster thermal infrared image temperature inversion and its application[J]. Metal mines, 2011, 40(6):319-322.
|
[8] |
李燕燕. 贵州白马洞铀矿床黑色—红色蚀变形成机理及其与铀成矿关系[D]. 成都: 成都理工大学, 2019.
|
[8] |
Li Y Y. Formation mechanism of black red alteration of baimadong uranium deposit in Guizhou and its relationship with uranium mineralization[D]. Chengdu: Chengdu University of Technology, 2019.
|
[9] |
周文斌, 李学礼, 史维浚. 相山地区地幔热流[J]. 华东地质学院学报, 1992, 15(3):249-254.
|
[9] |
Zhou W B, Li X L, Shi W J. Mantle heat flow in Xiangshan area[J]. Journal of East China University of Geosciences, 1992, 15(3):249-254.
|
[10] |
刘峰, 王贵玲, 张薇, 等. 燕山中部大地热流及岩石圈热结构特征——以承德市七家—矛荆坝地热田为例[J]. 地质学报, 2020, 94(7):1950-1959.
|
[10] |
Liu F, Wang G L, Zhang W, et al. Terrestrial heat flow and lithospheric thermal structure in the middle Yanshan region:A case study from the Qijia-Maojingba geothermal field in Chengde[J]. Acta Geologica Sinica, 2020, 94(7):1950-1959.
|
[11] |
张超, 胡圣标, 宋荣彩, 等. 共和盆地干热岩地热资源的成因机制:来自岩石放射性生热率的约束[J]. 地球物理学报, 2020, 63(7):2697-2709.
|
[11] |
Zhang C, Hu S B, Song R C, et al. Genetic mechanism of dry hot rock geothermal resources in Gonghe Basin:Constraints from rock radioactive heat generation rate[J]. Chinese Journal of Geophysics, 2020, 63(7):2697-2709.
|
[12] |
林乐夫, 孙占学, 王安东, 等. 南岭地区与东南沿海地区中生代花岗岩放射性地区化学特征及岩石圈热结构对比研究[J]. 岩石矿物学杂志, 2017, 36(4):488-500.
|
[12] |
Lin L F, Sun Z X, Wang A D, et al. Comparative study on radiochemical characteristics and lithospheric thermal structure of Mesozoic granite in Nanling area and southeast coastal area[J]. Journal of Rock Mineralogy, 2017, 36(4):488-500.
|
[13] |
Rybach L. Radioactive heat production in rocks and its relation to other petrophysical parameters[J]. Pure Appled Geophysics, 1976, 114:309-318.
|
[14] |
毛勇. 江西上地壳三维速度结构地震层析成像[D]. 抚州: 东华理工大学, 2013.
|
[14] |
Mao Y. Seismic tomography of three-dimensional velocity structure of upper crust in Jiangxi[D]. Fuzhou: Donghua University of Technology, 2013.
|
[15] |
彭涛, 吴基文, 任自强, 等. 淮北煤田现今地温场特征及大地热流分布[J]. 地球科学, 2015, 40(6):1083-1092.
|
[15] |
Peng T, Wu J W, Ren Z Q, et al. Characteristics of current geothermal field and terrestrial heat flow distribution in Huaibei coalfield[J]. Earth Science, 2015, 40(6):1083-1092.
|
[16] |
雷晓东, 胡圣标, 李娟, 等. 北京平原区西北部大地热流与深部地温分布特征[J]. 地球物理学报, 2018, 61(9):3735-3748.
|
[16] |
Lei X D, Hu S B, Li J, et al. Distribution characteristics of terrestrial heat flow and deep ground temperature in the northwest of Beijing Plain[J]. Chinese Journal of Geophysics, 2018, 61(9):3735-3748.
|
[17] |
汤国平, 庞文静, 张运涛, 等. 相山火山盆地邹家山铀矿床温热水分布特征及其找矿意义[J]. 铀矿地质, 2020, 36(2):123-130.
|
[17] |
Tang G P, Pang W J, Zhang Y T, et al. Distribution characteristics of warm and hot water and its prospecting significance of Zoujiashan uranium deposit in Xiangshan volcanic basin[J]. Uranium Geology, 2020, 36(2):123-130.
|
[18] |
汪集旸, 黄少鹏. 中国大陆大地热流数据汇编[J]. 地质科学, 1988, 23(2):196-204.
|
[18] |
Wang J Y, Huang S P. Compilation of geothermal data in Chinese mainland[J]. Geological Science, 1988, 23(2):196-204.
|
[19] |
邱楠生. 中国大陆地区沉积盆地地热状况剖面[J]. 地球科学进展, 1998, 13(5):447-448.
|
[19] |
Qiu N S. Geothermal profile of sedimentary basins in Chinese mainland[J]. Progress in Earth Sciences, 1998, 13(5):447-448.
|
[20] |
林锦荣, 胡志华, 饶泽煌, 等. 相山火山盆地及邻区铀多金属成矿类型、成矿特征及控矿因素[J]. 铀矿地质, 2020, 36(6):491-499.
|
[20] |
Lin J R, Hu Z H, Rao Z H, et al. Uranium polymetallic metallogenic types、metallogenic characteristics and ore controlling factors in Xiangshan volcanic basin and its adjacent areas[J]. Uranium Geology, 2020, 36(6):491-499.
|
[21] |
张万良, 杨松, 余水. 邹家山铀矿床矿体形态、规模及其变化特征[J]. 铀矿地质, 2015, 31(3):363-369.
|
[21] |
Zhang W L, Yang S, Yu S. Ore body shape,scale and variation characteristics of Zoujiashan uranium deposit[J]. Uranium Geo-logy, 2015, 31(3):363-369.
|
[22] |
银涌兵, 李海英, 孔德旭, 等. 相山铀矿田居隆庵矿床矿石地球化学特征及其与矿石品位关系探讨[J]. 世界核地质科学, 2021, 38(4):470-478.
|
[22] |
Yin Y B, Li H Y, Kong D X, et al. Discussion on ore geochemical characteristics of Julong'an deposit in Xiangshan uranium ore field and its relationship with ore grade[J]. World Nuclear Geoscience, 2021, 38(4):470-478.
|
[23] |
黄明光, 温圣奇, 张学珍, 等. 寻乌县横迳地区温泉铀水异常成因初探[J]. 科技与生活, 2010(16):132-134.
|
[23] |
Huang M G, Wen S Q, Zhang X Z, et al. Preliminary study on the genesis of hot spring uranium water anomaly in Hengjing area of Xunwu County[J]. Technology and Life, 2010(16):132-134.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
|
|
|
|