|
|
The application of comprehensive geophysical method to the identification of active faults in Luocheng County,Guangxi |
WU Jiao-Bing1( ), LI Jun-Liang1( ), JIANG Lan2, LU Jun-Hong1, PAN Li-Li3, WEI Wang-Qiu1 |
1. Earthquake Administration of the Guangxi Zhuang Autonomous Region,Nanning 530022,China 2. Shenzhen Longgang Geological Exploration Bureau,Shenzhen 518100,China 3. Zhuhai Engineering Exploration Institute of Guangdong,Zhuhai 519002,China |
|
|
Abstract Urban active fault detection plays an important role in the process of urban development and construction and also in ensuring the safety of people's lives and property.In this paper,with the purpose of identifying the activity of Luocheng fault and Shangtianqiao-Simen fault and on the basis of geometry,kinematics and chronology of the fault determined by the seismic geological survey,the authors detected the specific location of the fault that lies at the most likely active segment and is covered by the Quaternary sediments by high-density electrical method and seismic imaging method,which was then verified by drilling arrangement.In addition,the latest active age of the fault was determined through the offset relationship between the fault and the Quaternary overburden.The results show that the location of Luocheng fault and Shangtianqiao-Simen fault in the concealed segment can be accurately detected by the high-density electrical methods and seismic mapping method,and the fault activity age is determined to be the early Pleistocene based on the fact that fracture surface,scratch,cataclasite and structural brecciaa are developed,but the fault does not cut the Quaternary overburden.According to the requirements of relevant specifications,Luocheng fault and Shangtianqiao-Simen fault have not been active since the late Pleistocene,so the construction planning of Luocheng county does not need to take avoidance measures,and the appraisal results provide safety guarantee for the project construction of Luocheng County in the future.
|
Received: 13 December 2019
Published: 29 April 2021
|
|
Corresponding Authors:
LI Jun-Liang
E-mail: wujiaobing@163.com;269653004@qq.com
|
|
|
|
|
Distribution map of seismic structure in Luocheng County 1—Quaternary system;2—Triassic system;3—Permian system;4—Carboniferous system;5—Devonian system;6—Sinian system;7—Banxi group;8—Magmatic rock;9—earthquake;10—fault zone;11—concealed fault zone;12—geophysical survey line;13—geological survey point;14—drilling row
|
|
Field outcrop of Luocheng fault(a),structural section(b) and development of NW horizontal scratches and steps(c) 1—tectonic fracture zone;2—limestone;3—fault zone
|
|
Field outcrop in the south section of Shangtianqiao—Simen fault(a),structural section(b) and structural breccia(c) 1—residual clay;2—limestone;3—breccia;4—fracture zone
|
|
Field outcrop in the north section of Shangtianqiao—Simen fault(a),structural section(b) and fault plane(c) 1—residual clay;2—limestone;3—breccia;4—fracture zone;5—fracture zone
|
|
Survey map of interference wave
|
|
Geophysical prospecting results of line A-A' a—polar distance AO=22.5m multiple section;b—polar distance AO=52.5m multiple section;c—apparent resistivity contour map;d—seismic image waveforms
|
|
Geophysical prospecting results of line B-B' a—polar distance AO=22.5m multiple section;b—polar distance AO=52.5m multiple section;c—apparent resistivity contour map;d—seismic image waveforms
|
|
Geophysical prospecting results of line C-C' a—polar distance AO=35m multiple section;b—polar distance AO=85m multiple section;c—apparent resistivity contour map;d—seismic image waveforms
|
|
Geophysical prospecting results of line D-D' a—polar distance AO=22.5m multiple section;b—polar distance AO=52.5m multiple section;c—apparent resistivity contour map;d—seismic image waveforms
|
|
Geophysical prospecting results of line E-E' a—polar distance AO=35m multiple section;b—polar distance AO=85m multiple section;c—apparent resistivity contour map;d—seismic image waveforms
|
|
Drilling profile for each line a—A-A' line;b—C-C' line;c—D-D' line;d—E-E' line;1—arable soil;2—clay;3—silty clay;4—silt;5—gravelly clay;6—dolomite;7—limestone;8—water filled karst cave;9—clay filled karst cave;10—structural cataclastic rock;11—structural breccia;12—fracture;13—drilling hole
|
|
Drilling core for each line a—A-A' line drilling exposes fracture surface and structural cataclastic rock;b—C-C' line drilling exposes fracture scratch surface and structural breccia;c—D-D' line drilling exposes fracture surface and fault gouge;d—E-E' line drilling exposes fracture surface and structural fracture
|
[1] |
活动断层探测(GB/T 36072-2018)[S]. 北京:中华人民共和国国家质量监督检验检疫总局, 2018: 1-3.
|
[1] |
Surveying and prospecting of active fault(GB/T 36072-2018)[S]. Beijing:General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2018: 1-3.
|
[2] |
徐锡伟, 郭婷婷, 刘少卓, 等. 活动断层避让相关问题的讨论[J]. 地震地质, 2016,38(3):477-502.
|
[2] |
Xu X W, Guo T T, Liu S Z, et al. Discussion on issues associated with setback distance from active fault[J]. Seismology and Geology, 2016,38(3):477-502.
|
[3] |
雷启云, 柴炽章, 孟广魁, 等. 基于构造活动历史的活断层工程避让研究[J]. 工程地质学报, 2015,23(1):161-169.
|
[3] |
Lei Q Y, Chai C Z, Meng G K, et al. Tectonic activity history based method for engineering safety distance to active fault[J]. Journal of Engineering Geology, 2015,23(1):161-169.
|
[4] |
全国中小学校舍安全工程地震工作指南[S]. 北京:中国地震局, 2009: 1-3.
|
[4] |
Earthquake work guide for safety engineering of primary and secondary school buildings in China[S]. Beijing:China Earthquake Administration, 2009: 1-3.
|
[5] |
岩土工程勘察规范(GB50021-2001)[S]. 北京: 中国建筑工业出版社, 2009: 66-67.
|
[5] |
Code for investigation of geotechnical engineering(GB50021-2001)[S]. Beijing: China Architecture & Building Press, 2009: 66-67.
|
[6] |
鲁恒新. 基于国产高分辨率遥感影像精细解译哈思山南麓活动断层[D]. 北京:中国地震局地震预测研究所, 2016.
|
[6] |
Lu H X. Interpretation of South-Hasi-Mountain active fault zone based on domestic high resolution remote sense image[D]. Beijing:Institute of Earthquake Prediction,China Earthquake Administration, 2016.
|
[7] |
张璇, 张元生, 张丽峰. 卫星热红外遥感在地震预测和断层活动中的应用研究进展[J]. 地质论评, 2016,62(2):381-388.
|
[7] |
Zhang X, Zhang Y S, Zhang L F. Research progress of satellite thermal infrared remote sensing in earthquake prediction and fault activity[J]. Geological Review, 2016,62(2):381-388.
|
[8] |
张叶鹏, 王红, 黄朝宇, 等. 浅层地震勘探在工程场地地震安全性评价近场工作中的应用[J]. 物探与化探, 2004,28(5):463-466.
|
[8] |
Zhang Y P, Wang H, Huang C Y, et al. The application of shallow seismic exploration to the Near-site researches on the seismic safety evaluation of the construction sites[J]. Geophysical and Geochemical Exploration, 2004,28(5):463-466.
|
[9] |
何正勤, 潘华, 胡刚, 等. 核电厂址隐伏断裂探测中的地震勘探方法研究[J]. 地球物理学报, 2010,53(2):326-334.
|
[9] |
He Z Q, Pan H, Hu G, et al. Study on the seismic exploration method to detect buried fault in the site of Nuclear Power Plant[J]. Chinese Journal of Geophysics, 2010,53(2):326-334.
|
[10] |
王银, 孟广魁, 柴炽章, 等. 隐伏活断层探测中的精定位技术——以银川盆地芦花台断裂为例[J]. 地震地质, 2015,37(1):256-268.
|
[10] |
Wang Y, Meng G K, Chai Z Z, et al. The accurate location methods for buried active exploration:an example of Luhuatai faults in Yinchuan grben[J]. Seismology and Geology, 2015,37(1):256-268.
|
[11] |
张慧利, 张琳, 夏媛媛. 浅层地震勘探在城市活断层探测与危险性评价中的应用[J]. 工程地球物理学报, 2014,11(1):85-88.
|
[11] |
Zhang H L, Zhang L, Xia Y Y. The application of shallow seismic prospecting methods to urban active fault detection and risk assessment[J]. Chinese Journal of Engineering Geophysics, 2014,11(1):85-88.
|
[12] |
安好收, 罗传根. 浅层纵横波联合勘探在活动断层探测中的应用[J]. 物探与化探, 2019,43(3):543-550.
|
[12] |
An H S, Luo C G. The application of combined exploration of shallow P-wave and S-wave to active fault detection[J]. Geophysical and Geochemical Exploration, 2019,43(3):543-550.
|
[13] |
徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016,46(6):1104-1107.
|
[13] |
Xu J Y. The application of seismic method to the investigation of active faults in urban shallow Quaternary sediment area[J]. Geophysical and Geochemical Exploration, 2016,46(6):1104-1107.
|
[14] |
薛建, 黄航, 张良怀. 探地雷达方法探测与评价长春市活动断层[J]. 物探与化探, 2009,33(1):34-66.
|
[14] |
Xue J, Huang H, Zhang L H. The application of the gprmethod to detecting and estimating active faults in Changchun[J]. Geophysical and Geochemical Exploration, 2009,33(1):34-66.
|
[15] |
吴教兵, 高鹏飞. 高密度电法和地震映像在隐伏断裂中的应用——以玉林天然气支线项目为例[J]. 工程地球物理学报, 2016,13(1):94-98.
|
[15] |
Wu J B, Gao P F. The application of high density resistivity method and seismic imaging method to concealed fault-Taking the Yulin gas line project as an example[J]. Chinese Journal of Engineering Geophysics, 2016,13(1):94-98.
|
[16] |
林承灏, 王雷, 黎哲君, 等. 电成像与浅层地震联合在浅覆盖区隐伏断层探测中的应用[J]. 地质与勘探, 2017,53(1):133-140.
|
[16] |
Lin C H, Wang L, Li Z J, et al. Application of collocated resistivity tomography and shallow seismic method to the detection of concealed faults in areas with thin covers[J]. Geology and Exploration, 2017,53(1):133-140.
|
[17] |
吴教兵, 高鹏飞, 陆俊宏, 等. 综合物探方法在广西柳州隐伏断裂探测中的应用[J]. 地质与勘探, 2019,55(4):1026-1035.
|
[17] |
Wu J B, Gao P F, Lu J H, et al. Application of multiple geophysical methods to the detection of buried faults in Liuzhou,Guangxi[J]. Geology and Exploration, 2019,55(4):1026-1035.
|
[18] |
李细光, 李冰溯, 潘黎黎, 等. 广西灵山1936年6(3/4)级地震地表破裂带新发现[J]. 地震地质, 2017,39(4):69-78.
|
[18] |
Li X G, Li B S, Pan L L, et al. A new finding of surface rupture zones associated with 1936 Lingshan M6(3/4) earthquake,Guangxi,China[J]. Seismology and Geology, 2017,39(4):69-78.
|
[19] |
程志平. 电法勘探教程[M]. 北京: 冶金工业出版社, 2007: 3-20.
|
[19] |
Cheng Z P. Course of electric exploration[M]. Beijing: Metallurgical Industry Press, 2007: 3-20.
|
[20] |
单娜林, 程志平, 刘云祯. 工程地震勘探[M]. 北京: 冶金工业出版社, 2006: 146-154.
|
[20] |
Shan N L, Cheng Z P, Liu Y Z. Engineering seismic exploration[M]. Beijing: Metallurgical Industry Press, 2006: 146-154.
|
[21] |
单娜琳, 程志平. 地震映像方法及其应用[J]. 桂林工学院学报, 2003,23(1):36-40.
|
[21] |
Shan N L, Cheng Z P. Seismic imaging profiling method and application[J]. Journal of Guilin University of Technology, 2003,23(1):36-40.
|
[1] |
MA Guo-Kai, WEI Ding-Yong, LIU Ai-You, LIN Wan-Shun. Application of shallow seismic exploration technique in defect detection of PCCP used in the middle route of the South-to-North Water Transfer Project[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 525-530. |
[2] |
WANG Liang, HU Cong-Liang, ZHANG Jia-Wei, CHEN Guo-Yong, ZHANG Mei-Xue, YANG Wu, ZHANG Ying-Wen. Exploration of the genesis of regional geothermal resources in Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 304-315. |
|
|
|
|