|
|
The calculation of full-region apparent resistivity of central loop TEM based on deep learning |
WU Guo-Pei( ), ZHANG Ying-Ying( ), ZHANG Bo-Wen, ZHAO Hua-Liang |
School of Geology and Mining Engineering, Xinjiang University, Urumqi 830047, China |
|
|
Abstract Deep learning is an extension of the artificial neural network algorithm, which has a good approximation ability for complex functions. This paper introduces this means for the calculation of transient electromagnetic apparent resistivity. First, a 5-layer deep neural network is established with a single mapping relationship between the normalized induced electromotive force and the transient field parameters. By analyzing the error conditions trained by different numbers of neurons in a single hidden layer, the hidden layers of the 5-layer deep neural network are determined. The number of layered neurons is 13,8,5,8,13. The training algorithm chooses the improved Nadam algorithm with adaptive learning rate, which can speed up the training process. The trained deep neural network model is simulated and verified by a typical electrical model, and it is found that it has a good response to different geoelectric models, which proves the feasibility of calculating apparent resistivity based on deep learning put forward in this paper. The actual application results show that the trained deep neural network model can quickly and accurately calculate the apparent resistivity, and its effectiveness is verified by drilling.
|
Received: 08 November 2020
Published: 27 July 2021
|
|
Corresponding Authors:
ZHANG Ying-Ying
E-mail: wu_guopei@163.com;zhangyy19890423@163.com
|
|
|
|
|
F(u) and the change characteristics of the transient field parameter u
|
|
DNN calculation of apparent resistivity selection discriminant diagram
|
|
Universal five layer DNN structure
|
训练样本数 | 神经元个数 | 3 | 5 | 7 | 9 | 11 | 13 | 100 | 0.250000 | 0.250000 | 0.250000 | 0.250000 | 0.250000 | 0.240000 | 200 | 0.2400000 | 0.240000 | 0.088714 | 0.092951 | 0.091545 | 0.086794 |
|
The convergence of different numbers of neurons in the hidden layer of ANN%
|
|
The convergence reduction graph of the DNN Nadam training algorithm
|
|
Comparison of DNN apparent resistivity with different training convergence
|
|
Schematic diagram of apparent resistivity and apparent depth of 4 geoelectric models
|
|
Schematic diagram of apparent aesistivity and depth of Hejing’s water resources survey
|
[1] |
朴化荣. 电磁测深法原理[M]. 北京: 地质出版社, 1990.
|
[1] |
Piao H R. The theory of electromagnetic sounding[M]. Beijing: Geology Publishing House, 1990.
|
[2] |
方文藻, 李予国, 李貅. 瞬变电磁测深法原理[M]. 西安: 西北工业大学出版社, 1993.
|
[2] |
Fang W Z, Li Y G, Li X. Principle of transient electromagnetic sounding[M]. Xi’an: Northwestern Polytechnical University Press, 1993.
|
[3] |
牛之琏. 时间域电磁法原理[M]. 长沙: 中南工业大学出版社, 1992.
|
[3] |
Niu Z L. The theory of time-domain electromagnetic methods[M]. Changsha: Central South University of Technology Press, 1992.
|
[4] |
蒋邦远. 实用近区磁源瞬变电磁法勘探[M]. 北京: 地质出版社, 1998.
|
[4] |
Jiang B Y. Practical near zone source transient em sounding[M]. Beijing: Geological Publishing House, 1998.
|
[5] |
李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002:1195-1200.
|
[5] |
Li X. The theory and application of transient electromagnetic sounding[M]. Xi’an: Shanxi Science Technology Press, 2002:1195-1200.
|
[6] |
苏朱刘, 胡文宝. 中心回线方式瞬变电磁测深虚拟全区视电阻率和一维反演方法[J]. 石油物探, 2002, 41(2):216-221.
|
[6] |
Su Z L, Hu W B. Pseudo full-region apparent resistivity and its one-dim ensional inversion for center loop line configuration TEM data[J]. Geophysical Prospecting for Petroleum, 2002, 41(2):216-221.
|
[7] |
白登海, Meju Maxwell-A, 卢健, 等. 时间域瞬变电磁法中心方式全程视电阻率的数值计算[J]. 地球物理学报, 2003, 46(5):697-704.
|
[7] |
Bai D H, Meju M A, Lu J, et al. Numerical calculation of all-time apparent resistivity for the central loop transient electromagnetic method[J]. Chinese Journal of Geophys., 2003, 46(5):697-704.
|
[8] |
熊彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. 吉林大学学报:地球科学版, 2005, 35(4):515-519.
|
[8] |
Xiong B. Inverse spline interpolation for the calculation of all-time resistivity for the large loop transient electromagnetic method[J]. Journal of Jilin University:Earth Science Edition, 2003, 35(4):515-519.
|
[9] |
陈清礼. 瞬变电磁法全区视电阻率的二分搜索算法[J]. 石油天然气学报, 2009, 31(2):45-49.
|
[9] |
Chen Q L. Searching algorithm for full time apparent resistivity from TEM electromotive force data[J]. Journal of Oil and Gas Technology, 2009, 31(2):45-49.
|
[10] |
武军杰, 王兴春, 邓晓红, 等. 定源回线瞬变电磁x分量视电阻率计算方法[J]. 物探与化探, 2012, 36(4):684-687.
|
[10] |
Wu J J, Wang X C, Deng X H, et al. The method for Calculating x-component apparent resistivity of TEM fixed loop [J]. Geophysical and Geochemical Exploration, 2012, 36(4):684-687.
|
[11] |
郝延松, 胡博, 于润桥, 等. 磁性源瞬变电磁法视电阻率计算方法[J]. 物探与化探, 2012, 36(6):1034-1039.
|
[11] |
Hao Y S, Hu B, Yu R Q, et al. The calculation of apparent resistivity for magnetic source TEM[J]. Geophysical and Geochemical Exploration, 2012, 36(6):1034-1039.
|
[12] |
薛国强, 李貅, 底青云. 瞬变电磁法正反演问题研究进展[J]. 地球物理学进展, 2008, 90(4):1165-1172.
|
[12] |
Xue G Q, Li X, Di Q Y. Research progress in TEM forward modeling and inversion calculation[J]. Progress in Geophysics, 2008, 90(4):1165-1172.
|
[13] |
谢林涛, 付志红, 谢品芳, 等. 基于神经网络的视电阻率快速算法[J]. 地球物理学进展, 2009, 24(4):1527-1532.
|
[13] |
Xie L T, Fu Z H, Xie P F, et al. A fast a1gorithm of apparent resistivity based on neural networks[J]. Progress in Geophysics, 2009, 24(4):1527-1532.
|
[14] |
谢品芳, 谢林涛, 付志红, 等. 基于BP网络的视电阻率快速计算[J]. 重庆大学学报, 2009, 32(9):1111-1116.
|
[14] |
Xie P F, Xie L T, Fu Z H, et al. Fast algorithm for apparent resistivity calculation based on BP neural networks[J]. Journal of Chongqing University, 2009, 32(9):1111-1116.
|
[15] |
Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
|
[16] |
余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9):1799-1804.
|
[16] |
Yu K, Jia L, Chen Y Q, et al. Yesterday, today and tomorrow of deep learning[J]. Journal of Computer Research and Development, 2013, 50(9):1799-1804.
|
[17] |
毛健, 赵红东, 姚婧婧. 人工神经网络的发展及应用[J]. 电子设计工程, 2011, 19(24):62-65.
|
[17] |
Mao J, Zhao H D, Yao J J. Development and application of artificial neural networks[J]. Electronic Design Engineering, 2011, 19(24):62-65.
|
[18] |
Dozat T. Incorporating nesterov momentum into adam[J]. ICLR Workshop, 2016, 20(1):2013-2016.
|
[19] |
秦善强, 付志红, 朱学贵, 等. 遗传神经网络的瞬变电磁视电阻率求解算法[J]. 电工技术学报, 2017, 32(12):146-154, 250.
|
[19] |
Qin S Q, Fu Z H, Zhu X G, et al. Genetic neural network for apparent resistivity solution of transient electromagnetic[J]. Transactions of China Electrotechnical Society, 2017, 32(12):146-154,250.
|
[20] |
薛国强. 论瞬变电磁测深法的探测深度[J]. 石油地球物理勘探, 2004, 39(5):575-578.
|
[20] |
Xue G Q. On the detection depth of the transient electromagnetic sounding method[J]. Petroleum Geophysical Prospecting, 2004, 39(5):575-578.
|
[21] |
吕国印. 瞬变电磁法的现状与发展趋势[J]. 物探化探计算技术, 2007, 29(S1):111-115.
|
[21] |
Lyu G Y. The status quo and development trend of transient electromagnetic method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(S1):111-115.
|
[22] |
刘天佑. 地球物理勘探概论[M]. 北京: 地质出版社, 2007.
|
[22] |
Liu T Y. Introduction to geophysical prospecting[M]. Beijing: Geological Publishing House, 2007.
|
[23] |
Nabighian M N. Quasi-static transient response of a conducting half-space-an approximate representation[J]. Geophysics, 1979, 44(10):1700-1705.
|
[24] |
Francois Chollet. Python深度学习[M]. 张亮, 译. 北京: 人民邮电出版社, 2018.
|
[24] |
Francois chollet. Python deep learning[M]. Zhang L, translated. Beijing: People’s Posts and Telecommunications Press, 2018.
|
[25] |
毛勇华, 桂小林, 李前, 等. 深度学习应用技术研究[J]. 计算机应用研究, 2016, 33(11):3201-3205.
|
[25] |
Mao Y H, Gui X L, Li Q, et al. Research on deep learning application technology[J]. Application Research of Computers, 2016, 33(11):3201-3205.
|
[26] |
牟晋娟. 深度神经网络中激活函数的研究[J]. 电脑编程技巧与维护, 2019, 414(12):59-61.
|
[26] |
Mou J J. Research on activation function in deep neural networks[J]. Computer Programming Skills & Maintenance, 2019, 414(12):59-61.
|
[27] |
张崇荣. 基于卷积神经网络的图像分类方法研究[D]. 成都:电子科技大学, 2019.
|
[27] |
Zhang C R. Research on image classification method based on convolutional neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
[28] |
吴昌友. 神经网络的研究及应用[D]. 哈尔滨:东北农业大学, 2007.
|
[28] |
Wu C Y. Research and application of neural network[D]. Harbin: Northeast Agricultural University, 2007.
|
[29] |
柳小桐. BP神经网络输入层数据归一化研究[J]. 机械工程与自动化, 2010, 160(3):122-123, 126.
|
[29] |
Liu X T. Study on data normalization in BP neural network[J]. Mechanical Engineering & Automation, 2010, 160(3):122-123.
|
[30] |
沈花玉, 王兆霞, 高成耀, 等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报, 2008, 91(5):13-15.
|
[30] |
Shen H Y, Wang Z X, Gao C Y, et al. Determining the number of BP neural network hidden layer units[J]. Journal of Tianjin University of Technology, 2008, 91(5):13-15.
|
[1] |
YOU Xi-Ran, ZHANG Ji-Feng, SHI Yu. Artificial neural network-based transient electromagnetic imaging[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1206-1214. |
[2] |
QUE Ze-Sheng, LI Guan-Chao, HU Ying, JIAN Rui-Min, LIU Bing. GIS-based assessment of the radioactivity levels and risks of soil environment[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1336-1347. |
|
|
|
|