|
|
Heavy metals in peri-urban soil of Huangshi: Their distribution, risk assessment and source identification |
YANG Yu-Zhen1,2( ), LIU Sen-Rong1,2, YANG Yong3, LI Li-Fen1,2, LIU Sheng-Hua4,5, KANG Yi-Hua5, FEI Xin-Qiang1,2, GAO Yun-Liang1,2, GAO Bao-Long1,2( ) |
1. Central South Geological Survey Institute, China Metallurgical Geology Bureau, Wuhan 430074,China 2. Institute of Mineral Resources Research, China Metallurgical Geology Bureau, Beijing 101300,China 3. Hubei Geological Bureau, Wuhan 430022,China 4. Institute of Hydrology and Environmental Geology, CAGS, Shijiazhuang 050061,China 5. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083,China |
|
|
Abstract To study the quality of the arable soil in peri-urban area of Huangshi City, the present research focused on analyzing heavy metals distribution characteristics, assessed its risk to environment, and subsequently identified its sources by multivariate statistical analysis based on high-density topsoil and subsoil sampling. The results show that the content of heavy metals in the soil isas follows: As (5.2×10-6~155.9×10-6), Pb (19.2×10-6~426.1×10-6), Hg (0.012×10-6~1.823×10-6), Cd (0.03×10-6~4.59×10-6), Zn (34.8×10-6~529.6×10-6), Ni (8.5×10-6~86.2×10-6), Cu (16.52×10-6~104.39×10-6) and Cr (51.2×10-6~145.5×10-6). The average content of Cd exceeds the regional soil environmental background value, and Cd even exceeds the soil risk screening value of agricultural land. Heavy metal pollutants are mainly concentrated in the topsoil above 40 cm. Among the land use types, paddy lands and dry lands are heavily polluted, and Cd, As and Pb are the main pollutants. In paddy lands, As, Pb, Cu and Zn exhibit slight pollution, Cd and Hg exhibit moderate pollution, whereas Cr and Ni do not exhibit pollution. In dry lands and forest lands, As, Pb and Hg exhibit slight pollution, Cd exhibits moderate pollution and Cr, Cu, Ni and Zn do not exhibit pollution. The multivariate statistical analysis indicates that Cr and Ni in the soil of the study area are of natural origin and related to the parent material of the soil. Cd, Pb, As and Hg are mainly of anthropogenic pollutants, which is related to high-intensity industrial and mining production and sulfide mineral acidification release in Huangshi City.However Cu and Zn constitute mixed sources, partly from soil environmental background, and partly from human activities and industrial production emissions.
|
Received: 27 October 2020
Published: 15 December 2021
|
|
Corresponding Authors:
GAO Bao-Long
E-mail: 527657213@qq.com;45371309@qq.com
|
|
|
|
|
Study area and location of sampling sites
|
参数 | pH | As | Pb | Hg | Cd | Zn | Ni | Cu | Cr | 平均值 | 水田(N=180) | 7.26 | 26.7 | 70.7 | 0.170 | 0.55 | 152.9 | 42.6 | 51.99 | 96.4 | | 旱地(N=60) | 6.90 | 25.5 | 84.5 | 0.136 | 0.76 | 131.9 | 32.4 | 38.80 | 83.7 | | 林地(N=36) | 6.72 | 21.6 | 56.9 | 0.106 | 0.48 | 112.1 | 32.2 | 37.82 | 89.0 | 富集系数 | 水田(N=180) | | 2.94 | 2.70 | 4.15 | 5.02 | 2.08 | 1.36 | 1.76 | 1.30 | | 旱地(N=60) | | 2.81 | 3.22 | 3.32 | 6.95 | 1.79 | 1.04 | 1.32 | 1.13 | | 林地(N=36) | | 2.38 | 2.17 | 2.58 | 4.32 | 1.52 | 1.03 | 1.28 | 1.20 | 最大值 | 8.41 | 155.9 | 426.1 | 1.823 | 4.59 | 529.6 | 86.2 | 104.39 | 145.5 | 最小值 | 4.90 | 5.2 | 19.2 | 0.012 | 0.03 | 34.8 | 8.5 | 16.52 | 51.2 | 中位数 | 7.19 | 21.4 | 57.3 | 0.090 | 0.43 | 136.0 | 38.3 | 48.80 | 90.0 | 变异系数 | 0.10 | 0.70 | 0.66 | 1.24 | 0.86 | 0.52 | 0.36 | 0.34 | 0.19 | 区域背景值 | 6.87 | 9.1 | 26.2 | 0.041 | 0.11 | 73.6 | 31.2 | 29.5 | 74.2 | 风险筛选值 | 水田 | | 25 | 120 | 0.6 | 0.3 | 250 | 100 | 100 | 200 | | 其他 | | 30 | | 2.4 | | | | | |
|
Statistical summary of heavy metals in soil of study area
|
|
Histogram of heavy metals in soil (n=276)
|
|
Comparison of pH and heavy metals content between the topsoil and the deepsoil a—paddy land (surface and deep soil samples each 90);b—dry land (topsoil and deepsoil samples each 30);c— forest land (surface and deep soil samples each 18)
|
|
Heavy metals content profiles in paddy land(the dotted line denoted average content in this profile)
|
元素 | ≤0 | 0~1 | 1~2 | 2~3 | 3~4 | 4~5 | 平均值 | 中位数 | 最小值 | 最大值 | 无污染 | 轻度污染 | 中度污染 | 中强污染 | 强污染 | 较强污染 | As | 20(14.5) | 67(48.6) | 46(33.3) | 4(2.9) | 1(0.7) | | 0.78 | 0.77 | -1.40 | 3.51 | Cd | 7(5.1) | 31(22.5) | 50(36.2) | 37(26.8) | 12(8.7) | 1(0.7) | 1.64 | 1.66 | -0.66 | 4.05 | Cr | 116(84.1) | 22(15.9) | | | | | -0.30 | -0.30 | -1.12 | 0.28 | Pb | 29(21.0) | 63(45.6) | 39(28.3) | 7(5.1) | | | 0.68 | 0.58 | -0.86 | 2.71 | Cu | 53(38.4) | 84(60.9) | 1(0.7) | | | | 0.07 | 0.21 | -1.42 | 1.23 | Hg | 34(24.6) | 49(35.5) | 26(18.8) | 27(19.6) | 1(0.7) | 1(0.7) | 0.81 | 0.72 | -2.36 | 4.87 | Ni | 99(71.7) | 39(28.3) | | | | | -0.38 | -0.29 | -2.46 | 0.70 | Zn | 50(36.2) | 69(50.0) | 18(13.0) | 1(0.7) | | | 0.20 | 0.33 | -1.67 | 2.19 |
|
Statistics of accumulation index of heavy metals in the surface soil of the study area
|
Igeo | As | Cd | Cr | Pb | Cu | Hg | Ni | Zn | 水田 | 0.94 | 1.69 | -0.25 | 0.75 | 0.25 | 1.19 | -0.24 | 0.36 | 旱地 | 0.48 | 1.68 | -0.44 | 0.68 | -0.30 | 0.04 | -0.71 | -0.12 | 林地 | 0.47 | 1.30 | -0.31 | 0.34 | -0.24 | 0.17 | -0.57 | -0.08 | 表层土壤 | 0.78 | 1.64 | -0.30 | 0.68 | 0.07 | 0.81 | -0.38 | 0.20 |
|
Index of geo-accumulation for heavy metals in different land use types of topsoil
|
元素 | As | Cd | Cr | Pb | Cu | Hg | Ni | Zn | As | 1 | | | | | | | | Cd | 0.388 | 1 | | | | | | | Cr | 0.331 | 0.356 | 1 | | | | | | Pb | 0.444 | 0.907** | 0.400 | 1 | | | | | Cu | 0.468 | 0.337 | 0.326 | 0.282 | 1 | | | | Hg | 0.877* | 0.348 | 0.338 | 0.390 | 0.468 | 1 | | | Ni | 0.507 | 0.539 | 0.721* | 0.542 | 0.662 | 0.577 | 1 | | Zn | 0.672 | 0.736* | 0.571 | 0.724* | 0.649 | 0.717* | 0.883* | 1 |
|
Pearson correlation coefficient matrix for concentrations ofheavy metals in study area soil(n=276)
|
|
Hierarchical clustering of heavy metals in study area soil (n=276)
|
元素 | PC1 | PC2 | PC3 | Cr | 0.858 | 0.180 | 0.034 | Ni | 0.857 | 0.297 | 0.312 | Cu | 0.635 | 0.110 | 0.458 | Zn | 0.606 | 0.574 | 0.490 | Cd | 0.200 | 0.948 | 0.158 | Pb | 0.228 | 0.934 | 0.195 | Hg | 0.186 | 0.138 | 0.913 | As | 0.203 | 0.236 | 0.848 | 方差/% | 30.101 | 28.850 | 27.041 | 累积方差/% | 30.101 | 58.951 | 85.992 |
|
Varimax-rotated factor (three-factor) model for soil samples(n=276)
|
[1] |
Pan L B, Wang Y, Ma J, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities[J]. Environmental Science and Pollution Research, 2018, 25:1055-1069.
|
[2] |
Akinwunmi F, Akinhanmi T F, Atobatele Z A, et al. Heavy metal burdens of public primary school children related to playground soils and classroom dusts in Ibadan North-West local government area, Nigeria[J]. Environmental Toxicology and Pharmacology, 2017, 49:21-26.
|
[3] |
Yu G Y, Qin X F, Xu J, et al. Characteristics of particulate-bound mercury at typical sites situated on dust transport paths in China[J]. Science of the Total Environment, 2019, 648:1151-1160.
|
[4] |
Yuan G L, Sun T H, Han P, et al. Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China[J]. Journal of Geochemical Exploration, 2013, 130:15-21.
|
[5] |
Yuan G L, Sun T H, Han P, et al. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China[J]. Journal of Geochemical Exploration, 2014, 136:40-47.
|
[6] |
Duan X C, Yu H H, Ye T R, et al. Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top-and sub-soils: A case of suburban area in Beijing, China[J]. Ecological Indicators, 2020, 112:106085.
|
[7] |
Lin Y, Han P, Huang Y, et al. Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis[J]. Journal of Geochemical Exploration, 2017, 173:110-118.
|
[8] |
Wang A T, Wang Qi, Li Jun, et al. Geo-statistical and multivariate analyses of potentially toxic elements’ distribution in the soil of Hainan Island (China): A comparison between the topsoil and subsoil at a regional scale[J]. Journal of Geochemical Exploration, 2019, 197:48-59.
|
[9] |
邹玲, 王翠红, 李洪斌, 等. 长沙市边缘带菜园土壤重金属含量及污染现状评价[J]. 湖南农业大学学报:自然科学版, 2009, 35(1):107-110.
|
[9] |
Zou L, Wang C H, Li H B, et al. Assessment on contents of heavy metal and its pollution situation in vegetable soils at peri-urban area of Changsha[J]. Journal of Hunan Agricultural University:Natural Sciences, 2009, 35(1):107-110.
|
[10] |
田帅, 冯万忠, 高彩云. 城市边缘区土壤重金属污染及其生态环境效应研究进展[J]. 宁夏农林科技, 2013, 54(3):52-55.
|
[10] |
Tian S, Feng W Z, Gao C Y. Research progress of heavy metal pollution and its eco-environmental effect in the urban fringe area[J]. Ningxia Journal of Agricultural and Forest Science and Technology, 2013, 54(3):52-55.
|
[11] |
阎伍玖. 芜湖市城市边缘区土壤重金属污染空间特征研究[J]. 地理科学, 2008, 28(2):282-285.
|
[11] |
Yan W J. Heavy metal pollution in soils of peri-urban zone of Wuhu city[J]. Scientia Geographica Snica, 2008, 28(2):282-285.
|
[12] |
庄腾飞, 柳云龙, 章立佳, 等. 上海城郊土壤重金属含量的空间变异与分布特征——以上海市闵行区为例[J]. 长江流域资源与环境, 2012, 21(S1):99-104.
|
[12] |
Zhuang T F, Liu Y L, Zhang L J, et al. Spatial variability and distribution of soil heavy metals content in suburbs of Shanghai — A case study of Minhang Shanghai city[J]. Resources and Environmental in the Yangtze Basin, 2012, 21(S1):99-104.
|
[13] |
虎彩娇, 成海容, 李锦伦, 等. 黄石市大气PM 10和 PM 2.5中元素特征及重金属生态风险评价[J]. 环境化学, 2018, 37(1):138-145.
|
[13] |
Hu C J, Cheng H R, Li J L, et al. Characteristics of elements and ecological risk assessment of heavy metals in PM 10 and PM 2.5 in Huangshi[J]. Environmental Chemistry, 2018, 37(1):138-145.
|
[14] |
姚瑞珍, 张勇, 王亚良, 等. 黄石市大气降尘中重金属污染特征与评价[J]. 地球与环境, 2016, 44(2):212-218.
|
[14] |
Yao R Z, Zhang Y, Wang Y L, et al. Distribution characteristics and risk assessment of heavy metals in atmosphere dustfall of Huangshi city, China[J]. Earth and Evironment, 2016, 44(2):212-218.
|
[15] |
马鑫, 尹刚, 吴乐和. 黄石市某钢铁厂周边苔藓植物重金属含量研究及污染评价[J]. 湖北农业科学, 2019, 58(10):51-56.
|
[15] |
Ma X, Yin G, Wu L H. Research on content of heavy metals in moss around a steel mill and its pollution assessment in Huangshi city[J]. Hubei Agricultural Sciences, 2019, 58(10):51-56.
|
[16] |
许大毛, 张家泉, 占长林, 等. 有色金属冶炼厂周边地表水和农业土壤中重金属污染特征与评价[J]. 环境化学, 2016, 35(11):2305-2314.
|
[16] |
Xu D M, Zhang J Q, Zhan C L, et al. Pollution characteristics and health risk assessment of heavy metals in surface water and agricultural soil around the Nonferrous Metal Smeltery[J]. Environmental Chemistry, 2016, 35(11):2305-2314.
|
[17] |
年夫喜, 陈会, 黎南关, 等. 黄石市青山湖底泥重金属污染评价分析[J]. 人民长江, 2014, 45(16):22-25.
|
[17] |
Nian F X, Chen H, Li N G, et al. Analysis and assessment on heavy metal pollution in bottom mud of Qingshan Lake in Huangshi city[J]. Yangtze River, 2014, 45(16):22-25.
|
[18] |
尹晓蛟, 唐利君, 曾庆春, 等. 黄石废弃采石场人工植被修复后重金属含量特征及污染评价[J]. 湖北林业科技, 2018, 47(1):34-44.
|
[18] |
Yin X J, Tang L J, Zeng Q C, et al. Distribution and pollution assessment of heavy metals in soils after artificial vegetation restoration in abandoned quarries in Huangshi[J]. Hubei Forestry Science and Technology, 2018, 47(1):34-44.
|
[19] |
张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006, 25(1):65-72.
|
[19] |
Zhang X Z, Bao Z Y, Tang J H. Application of enrichment factor in evaluation of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 2006, 25(1):65-72.
|
[20] |
孟昭虹, 高玉娟. 黑龙江生态省土壤重金属分布特征及其生态风险评价[J]. 安徽农业科学, 2008, 36(31):13819-13821,13830.
|
[20] |
Meng Z H, Gao Y J. Distribution characteristics of heavy metals in soil of Heilongjiang ecological province and its ecological risk assessment[J]. Journal of Anhui Agricultural Science, 2008, 36(31):13819-13821, 13830.
|
[21] |
郭笑笑, 刘丛强, 朱兆洲, 等. 土壤重金属污染评价方法[J]. 生态学杂志, 2011, 30(5):889-896.
|
[21] |
Guo X X, Liu C Q, Zhu Z Z, et al. Evaluation methods for soil heavy metals contamination: A review[J]. Chinese Journal of Ecology, 2011, 30(5):889-896.
|
[22] |
Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(3):108-118.
|
[23] |
Salomons W, Förstner U. Metals in the hydrocycle[M]. Berlin Heidelberg:Springer-Verlag, 1984:63-98.
|
[24] |
陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6):2822-2833.
|
[24] |
Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6):2822-2833.
|
[25] |
张丽, 李秀, 张家泉, 等. 黄石市典型农业土壤中重金属污染水平及评价[J]. 环境科学与技术, 2014, 37(12):230-235.
|
[25] |
Zhang L, Li X, Zhang J Q, et al. Concentration and assessment of heavy metals in the typical agricultural soil from Huangshi city[J]. Environmental Science and Technology, 2014, 37(12):230-235.
|
[26] |
Förstner U, Ahlf W, Calmano W, et al. Sediment criteria development-contributions from environmental geochemistry to water quality management[M]. Berlin Heidelberg:Springer-Verlag, 1990:311-338.
|
[27] |
Stafilov T, Šajn R, Boev B, et al. Distribution of some elements in surface soil over the Kavadarci region, Republic of Macedonia[J]. Environmental Earth Sciences, 2010, 61(7):1515-1530.
|
[28] |
Micó C, Recatalá L, Peris M, et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis[J]. Chemosphere, 2006, 65(5):863-872.
|
[29] |
乔胜英, 李望成, 何方, 等. 漳州市城市土壤重金属含量特征及控制因素[J]. 地球化学, 2005, 34(6):635-642.
|
[29] |
Qiao S Y, Li W C, He F, et al. Characteristics and controlling factors of heavy metal contents in urban soils in Zhangzhou city, Fujian province[J]. Geochimica, 2005, 34(6):635-642.
|
[30] |
赵靓, 梁云平, 陈倩, 等. 中国北方某市城市绿地土壤重金属空间分布特征、污染评价及来源解析[J]. 环境科学, 2020, 41(12):5552-5561.
|
[30] |
Zhao L, Liang Y P, Chen Q, et al. Spatial distribution, contamination assessment, and sources of heavy metals in urban green space soil of a Northern city in China[J]. Environmental Science, 2020, 41(12):5552-5561.
|
[31] |
Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agriculturalregions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642:690-700.
|
[1] |
YANG Chan, WU Juan-Juan, CHE Xu-Xi, YUE Si-Yu, LIU Zhi-Feng, SONG Feng-Min. Pollution analysis and assessment of sediments in the upper reaches of the Hanjiang River[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1361-1370. |
[2] |
LIU Qing-Yu, MA Ying, CHENG Li, SHEN Xiao, ZHANG Ya-Feng, MIAO Guo-Wen, HUANG Qiang, HAN Si-Qi. Density and spatial distribution of organic carbon in the topsoil of eastern Qinghai[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1098-1108. |
|
|
|
|