|
|
A study of anomaly characteristics of CSAMT and deep prospecting prediction of the lead-zinc deposits in eastern Bangpu-Digei mining area of Tibet |
CHEN Xiao-Long( ), GAO Po, CHENG Shun-Da, WANG Xiao-Qing, LUO Ke |
Tibet Jinhe Mining Co., Ltd., Lhasa 851400, China |
|
|
Abstract The shallow resources of lead-zinc deposits are gradually decreasing in eastern Bangpu of Tibet, and hence deep and side exploration is imperative. The authors used CSAMT to carry out deep exploration and make prospecting prediction of lead-zinc deposits in the Bangpu-Digei mining area. The geophysical profiles were deployed in accordance with the 100 m×40 m survey network, and 373 physical points were determined. CSAMT data processing was conducted for the magnetic field intensity so as to calculate the full-region apparent resistivity and obtain the full-region apparent resistivity data at 42 840 sites. Then, the CSAMT anomaly map of full-region apparent resistivity in the exploration area were compiled, and four abnormal areas of electrical conductivity were delineated, i.e., high resistivity abnormal areas R1, R2, R3 and low resistivity abnormal areas R4. Combined with previous exploration data, the authors carried out geological interpretation of CSAMT data and established corresponding prospecting prediction model. The further drilling verification results prove the reliability of CSAMT prediction results.
|
Received: 22 September 2020
Published: 29 April 2021
|
|
|
|
|
|
Geological diagram of the lead-zinc deposits in eastern Bangpu—Digei 1—Quaternary broken plot and alluvial product; 2—Quaternary residual slope product; 3—Quaternary alluvial products; 4—the first lithologic section of the Dianzhong group: tuffite,volcanic breccia,andesite; 5—the second lithologic section of the Dianzhong group: andesite,volcanic breccia; 6—Upper Permian Pangna group: a small amount of quartzite schist; 7—Lower Permian Luobadui group: marble、tuffaceous slate、carbonaceous slate ; 8—dacite; 9—biotite monzonitic granite; 10—Early Himalayan medium-fine-grained diorite; 11—quartz porphyry; 12—ore body location and number; 13—geological boundaries; 14—infer fault location and number; 15—pick up the sample taken by location and number; 16—Digei mining area; 17—mining area in the east section of Bangpu; 18—the scope and measuring line of the work of CSAMT; 19—verification drilling
|
数据来源 | 岩矿石名称 | 块数 | η/% | ρ/(Ω·m) | 电性特征 | 变化范围 | 常见值 | 变化范围 | 常见值 | 收集 | 铅锌矿石 | 31 | 15.0~20.1 | 17.5 | | | 高极化 | | 含铜铅矿石 | 22 | 13.6~38.8 | 26.2 | 100~250 | | 低阻、高极化 | | 砂板岩 | 12 | 1.30~6.61 | 3.95 | 1500~2500 | | 高阻、低极化 | | 花岗岩 | 15 | 1.06~3.65 | 2.35 | 3500~7000 | | 高阻、低极化 | | 灰岩 | 34 | 1.36~4.33 | 2.84 | | | 高阻、低极化 | | 大理岩 | 9 | 2.21~3.34 | 2.77 | 1500~3000 | | 高阻、低极化 | 2016年实测 | 铅锌矿石 | 26 | 7.6~23.8 | 17 | 100~500 | 217 | 低阻、高极化 | | 炭质板岩 | 26 | 8.5~16.9 | 8.9 | 2500~3000 | 1667 | 中高极化 | | 安山岩(黄铁矿化) | 25 | 1.6~9.9 | 3.8 | 3500~4500 | 4008 | 中低阻、中低极化 | | 凝灰岩 | 26 | 1.3~8.6 | 3.5 | 5500~6500 | 5821 | 中低阻、中低极化 | | 石英斑岩 | 26 | 1.9~5.2 | 2.3 | 13000~14000 | 13258 | 中高阻、中低极化 | | 花岗斑岩 | 26 | 1.8~5.6 | 1.8 | 20000~50000 | 44321 | 高阻、低极化 | | 英安岩 | 26 | 1.3~6.3 | 1.6 | 5000~6000 | 5431 | 中低阻、低极化 | | 大理岩 | 27 | 1.3~3.4 | 1.1 | 4000~5000 | 4578 | 中低阻、低极化 | 2017年实测 | 铅锌矿石 | 32 | 0.34~27.96 | 15.5 | 58~11123 | 448 | 低阻、高极化 | | 强黄铁矿化矿石 | 25 | 0.87~18.03 | 21.06 | 0~10069 | 654 | 中阻、高极化 | | 氧化矿石 | 27 | 0.12~6.35 | 1.97 | 15~1850 | 172 | 低阻、低极化 | | 角砾岩 | 33 | 0.25~18.03 | 1.86 | 12~57366 | 3706 | 高阻、低极化 | | 花岗岩 | 28 | 1.06~3.65 | 1.78 | 450~7000 | 4800 | 高阻、低极化 | | 板岩 | 40 | 0.262~2.796 | 0.876 | 278~8936 | 2201 | 高阻、低极化 | | 变质砂岩 | 27 | 0.271~1.522 | 0.891 | 1073~5550 | 2100 | 高阻、低极化 | | 凝灰岩 | 33 | 1.3~8.6 | 3.5 | 3078~6700 | 5821 | 高阻、低极化 | | 石英斑岩 | 30 | 1.9~5.2 | 3.5 | 6237~14790 | 13239 | 高阻、低极化 | | 安山岩 | 29 | 1.8~9.9 | 3.8 | 3690~6027 | 5023 | 高阻、低极化 |
|
Rock and ore physical parameters characteristic table of the lead-zinc deposits in eastern bangpu—digei
|
|
Site photo of the buried electrode of the field source and the receiver tank
|
|
Resistivity inversion of Hy full-region apparent resistivity anomaly diagram
|
|
Schematic diagram of the deposit model
|
|
Profile inversion anomaly diagram of Hy full-region apparent resistivity of 210 line and 250 line
|
|
Line 210 profile inversion anomaly diagram of Hy full-region apparent resistivity and borehole verification diagram
|
[1] |
唐菊兴, 王立强, 郑文宝, 等. 冈底斯成矿带东段矿床成矿规律及找矿预测[J]. 地质学报, 2014,88(12):2545-2555.
|
[1] |
Tang J X, Wang L Q, Zheng W B, et al. Ore deposits metallogenic regularity and prospecting in the eastern section of the Gangdese metallogenic belt[J]. Acta Geologica Sinica, 2014,88(12):2545-2555.
|
[2] |
陈小龙, 高坡, 黄文俊, 等. 西藏帮浦矿区东段铅锌矿地质特征及控矿因素[J]. 世界有色金属, 2018(6):160-161.
|
[2] |
Chen X L, Gao P, Huang W J, et al. Geological characteristics and ore controlling factors of lead-zinc deposits in eastern part of Tibet pumped mining area[J]. World Nonferrous Metals, 2018(6):160-161.
|
[3] |
黄理善, 侯一俊, 杨红, 等. 斑岩型铜矿床带条件约束的CSAMT数据精细处理和反演解释[J]. 物探与化探, 2015,(4):817-822.
|
[3] |
Huang L S, Hou Y J, Yang H, et al. CSAMT data interpretation by fine processing and constraint inversion in the porphyry copper deposit[J]. Geophysical and Geochemical Exploration, 2015,(4):817-822.
|
[4] |
刘志臣, 吴发刚, 骆红星, 等. CSAMT法在贵州遵义锰矿整装勘查中的运用[J]. 物探与化探, 2016,40(2):342-348.
|
[4] |
Liu Z C, Wu F G, Luo H X, et al. The application of CSAMT method to monoblock exploration in the Zunyi manganese deposit, Guizhou Province[J]. Geophysical and Geochemical Exploration, 2016,40(2):342-348.
|
[5] |
王峰, 吴志春, 陈凯, 等. CSAMT法在深部地质结构探测中的应用——以相山铀矿田邹家山地区为例[J]. 物探与化探, 2016,40(1):17-20.
|
[5] |
Wang F, Wu Z C, Chen K, et al. The application of CSAMT to detecting deep geological structures in the Zoujiashan area of the Xiangshan uranium orefield[J]. Geophysical and Geochemical Exploration, 2016,40(1):17-20.
|
[6] |
韩自强, 冯兵, 陈红, 等. 电性双极源频率域全区视电阻率的计算及应用效果研究[J]. 地球物理学进展, 2016,31(4):1575-1582.
|
[6] |
Han Z Q, Feng B, Chen H, et al. Calculation and application effect of electrical bipolar source frequency domain full-zone apparent resistivity[J]. Progress in Geophysics, 2016,31(4):1575-1582.
|
[7] |
张叶鹏, 谢亮, 李艳, 等. 基于全区视电阻率的CSAMT应用研究——以西藏帮浦—笛给铅锌矿区为例[J]. 矿产与地质, 2020,34(3):517-524.
|
[7] |
Zhang Y P, Xie L, Li Y, et al. Study of CSAMT application based on the full-region apparent resistivity: an example of the Bangpu-Digei lead-zinc mining area in Tibet[J]. Mineral Resources and Geology, 2020,34(3):517-524.
|
[8] |
张叶鹏, 王红, 黄文俊, 等. 西藏帮浦东段—笛给铅锌矿多金属矿床激电异常特征及找矿方向[J]. 矿产与地质, 2018,32(5):903-909.
|
[8] |
Zhang Y P, Wang H, Huang W J, et al. Abnormal characteristics of induced polarization method (ip) and prospecting direction of middle and low temperature hydrothermal Pb-Zn polymetallic deposits of the lead-zinc deposits in eastern Bangpu—Digei in Tibet[J]. Mineral Resources and Geology, 2018,32(5):903-909.
|
[9] |
唐菊兴, 王登红, 汪雄武, 等. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J]. 地球学报, 2010,31(4):495-506.
|
[9] |
Tang J X, Wang D H, Wang X W, et al. Geological features and metaliogenic model of the Jiama copper-polymetallic deposit in Tibet[J]. Acta Geoscientia Sinica, 2010,31(4):495-506.
|
[10] |
郑文宝. 西藏甲玛铜多金属矿床成矿模式与找矿模型[D]. 成都:成都理工大学, 2012.
|
[10] |
Zheng W B. The Study on Metallogenic Model and Prospecting Pattern for Jiama Polymetallic Copper Deposit, Tibet[D]. Chengdu:Chengdu University of Technology, 2012.
|
[11] |
赵涵, 肖渊甫, 胡涛, 等. 西藏驱龙斑岩型铜矿床成矿模式研究[J]. 地质与资源, 2011,20(3):210-216.
|
[11] |
Zhao H, Xiao Y F, Hu T, et al. Research on the metallogenic model for the Qulong porphyey copper deposit In Tibet[J]. Geology and Resources, 2011,20(3):210-216.
|
[12] |
曾忠诚, 刘德民, 王明志, 等. 西藏冈底斯东段驱龙—甲马地区构造—岩浆演化与成矿[J]. 地质论评, 2016,62(3):663-678.
|
[12] |
Zeng Z C, Liu D M, Wang M Z, et al. Tectonic—Magmatic evolution and mineralization of the qulong—jiama areas in eastern section of Gangdese Mountains, Xizang (Tibet)[J]. Geological Review, 2016,62(3):663-678.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
YANG Tian-Chun, HU Feng-Ming, YU Xi, FU Guo-Hong, LI Jun, YANG Zhui. Analysis and application of the responses of the frequency selection method of telluric electricity field[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1010-1017. |
|
|
|
|