|
|
The research on the application of geological prediction technology to Zhangjihuai railway tunnel |
CAI Sheng |
China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063,China |
|
|
Abstract The geological conditions of Zhangjihuai railway is complex,the structure and karst are extensively developed,and hence the risk of construction is high.Based on the construction of Zhangjihuai railway,this paper expounds the difficulties,prediction principles and key geophysical techniques of the railway tunnel geological prediction,and summarizes a set of technologies for the railway tunnel geological prediction.The practical examples show that the five-step method is useful in geological prediction,the surface exploration data are important for dividing the key sections for macroscopic control,the long-distance prediction and short-distance prediction of geophysical exploration technology should be used together,and the advance drilling must be used to verify the geophysical exploration anomalies,so that the prediction work can be a closed-loop, which is conducive to avoiding risks and reducing false reports.The whole set of advanced forecast technologies of Zhangjihuai railway is feasible and useful,which is worthy of spreading.
|
Received: 07 May 2020
Published: 15 December 2021
|
|
|
|
|
步骤 | 方法 | 工作内容 | 作用 | 第一阶段 | 资料收集整理 | 施工前期资料收集,地勘资料再分析 | 理解隧道宏观地质情况 | 第二阶段 | 划分重点段落 | 结合第一阶段综合资料,划分风险等级,确定预报方案 | 明确预报工作重点,重点段落加强预报 | 第三阶段 | 长距离预报 | 通过TSP对100~150 m以内的大型构造、大型溶洞的识别与定位 | 对前方围岩进行宏观评价,为进一步探测提供靶区 | 第四阶段 | 中短距离预报 | 在TSP预报的异常段,布置中短距离探测方法 | 裂隙水探测采用瞬变电磁,其他异常体采用探地雷达进一步定位 | 第五阶段 | 超前钻探 | 超前水平钻孔对物探异常进行验证 | 钻探验证的异常进行施工预警 |
|
Five stages of geological prediction process
|
|
2D view of prediction result of TSP303 system
|
|
2D curves of rock property of TSP303 system
|
|
The iversion apparent resistivity profiles of TEM
|
|
Photos of water gushing in the face of the tunnel
|
|
The development of karst of Yongshun tunnel
|
|
The prediction result and rock property of TETSP system
|
|
The waveform result of GPR
|
|
The exposed karst cave of Yongshun tunnel
|
[1] |
崔德海, 杨庆波. 宜万铁路隧底岩溶探查物探技术应用研究[J]. 铁路工程学报, 2019, 125(2):80-84.
|
[1] |
Cui D H, Yang Q P. Applicable study of geophysical exploration technology for Karst under tunnel on Yichang-Wanzhou Railway[J]. Journal of Railway Engineering Society, 2019, 125(2):80-84.
|
[2] |
戴前伟, 王鹏飞, 冯德山, 等. 综合物探方法在隧道掌子面超前地质预报中的应用[J]. 工程勘察, 2012, 40(8):84-88.
|
[2] |
Dai Q W, Wang P F, Feng D S. Application of integrated geophysical prospecting method in the leading geological forecast of tunnel faces[J]. Geotechnical Investigation & Surveying, 2012, 40(8):84-88.
|
[3] |
叶英. 新型隧道超前地质预报方法与技术研究[J]. 铁道工程学报, 2009, 132(132):59-63.
|
[3] |
Ye Y. Research on the method and technology for geological forecast in advance for new type tunnel[J]. Journal of Railway Engineering Society, 2009, 132(132):59-63.
|
[4] |
赵永贵. 国内外隧道超前预报技术评析与推介[J]. 地球物理学进展, 2007, 22(4):1344-1352.
|
[4] |
Zhao Y G. Analysis and recommendation of tunnel prediction techniques at home and abroad[J]. Progress in Geophysics, 2007, 22(4):1344-1352.
|
[5] |
沈进喜, 雪飞胜, 邹伟. 综合物探技术在岩溶隧道中的应用[J]. 长沙铁道学院学报:社会科学版, 2012, 13(1):212-215.
|
[5] |
Shen J X, Xue F S, Zou W. Application of comprehensive geophysical exploration technology in Karst Tunnel[J]. Journal of Changsha Railway University:Social Science Edition, 2012, 13(1):212-215.
|
[6] |
谭天元, 叶勇, 张伟. 隧道工程超前地质预报中的综合物探技术[J]. 贵州水力发电, 2006, 20(6):13-18.
|
[6] |
Tan T Y, Ye Y, Zhang W. Comprehensive physical detecting technology in geological over-forecast of tunnel engineering[J]. Guizhou Water Power, 2006, 20(6):13-18.
|
[7] |
陈德君, 王树栋, 王光权. 综合物探方法在隧道超前地质预报中的应用[J]. 铁道勘察, 2017, 43(5):18-22.
|
[7] |
Chen D J, Wang S D, Wang G Q. Application of comprehensive geophysical prospecting method in advanced geological prediction of tunnel[J]. Railway Investigation and Surveying, 2017, 43(5):18-22.
|
[8] |
张杨, 杨君, 周黎明, 等. TSP在隧道工程施工中的常见干扰和对岩体裂隙水及软弱夹层等的预报研究[J]. 地球物理学进展, 2018, 33(2):892-899.
|
[8] |
Zhang Y, Yang J, Zhou L M, et al. Common interference and the prediction of rock fissure water and weak interlayer in tunnel construction using TSP[J]. Progress in Geophysics, 2018, 33(2):892-899.
|
[9] |
戴前伟, 何刚, 冯德山. TSP-203在隧道超前预报中的应用[J]. 地球物理学进展, 2005, 20(2):460-464.
|
[9] |
Dai Q W, He G, Feng D S. Application of the TSP-203 system in geological advanced prediction of tunnel[J]. Progress in Geophysics, 2005, 20(2):460-464.
|
[10] |
付代光, 周黎明, 肖国强, 等. TSP预报隧道不良地质体应用研究[J]. 地球物理学进展, 2016, 31(1):417-426.
|
[10] |
Dai F G, Zhou L M, Xiao G Q, et al. Forecast defective geological bodies in tunnel by TSP[J]. Progress in Geophysics, 2016, 31(1):417-426.
|
[11] |
舒森. 如何提高TSP203系统在应用中的准确性[J]. 物探与化探, 2013, 37(5):710-714.
|
[11] |
Shu S. A discussion on the improvement of the application accuracy of the TSP203 system[J]. Geophysical and Geochemical Exploration, 2013, 37(5):710-714.
|
[12] |
李兆龙. TSP203影响探测结果的若干问题探讨[J]. 物探与化探, 2015, 39(5):1085-1088.
|
[12] |
Li Z L. TSP203 A tentative discussion on some problems influencing the results of TSP203 detection[J]. Geophysical and Geochemical Exploration, 2015, 39(5):1085-1088.
|
[13] |
舒森, 王树栋, 李广, 等. 瞬变电磁法指导复杂地质隧道超前水平钻探应用[J]. 物探与化探, 2018, 42(6):1311-1316.
|
[13] |
Shu S, Wang S D, Li G, et al. The application of TEM to guiding advance exploration drilling of complex geological tunnel[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1311-1316.
|
[14] |
范涛. TEM虚拟波场三维连续速度分析及其在隧道超前预报中的应用[J]. 物探与化探, 2011, 35(2):243-245.
|
[14] |
Fan T. A 3D continuous velocity analysis of TEM fictitious wave-field and its application to tunnel advanced prediction[J]. Geophysical and Geochemical Exploration, 2011, 35(2):243-245.
|
[15] |
范占锋, 李天斌, 孟陆波. 探地雷达在公路隧道超前地质预报中的应用[J]. 物探与化探, 2010, 34(1):119-122.
|
[15] |
Fan Z F, Li T B, Meng L B. Advanced geological forecast of application of GPR in road tunnel[J]. Geophysical and Geochemical Exploration, 2010, 34(1):119-122.
|
[16] |
邓国文, 王齐仁, 廖建平, 等. 隧道不良地质现象的探地雷达正演模拟与超前探测[J]. 物探与化探, 2015, 39(3):651-656.
|
[16] |
Deng G W, Wang Q R, Liao J P, et al. Forward modeling and advanced detection of radar in adverse geological phenomena tunnel[J]. Geophysical and Geochemical Exploration, 2015, 39(3):651-656.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
CHEN Zhong-Wei, GUO Liang-Hui, CHEN Yuan-Ke, TANG Han-Han. A method for building a 3D crust-mantle velocity reference model: A case study of the central South China Block[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 936-943. |
|
|
|
|