|
|
An analysis of full-component response of multi-source semi-airborne TEM method |
ZHANG Ying-Ying( ) |
College of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, China |
|
|
Abstract Multi-source semi-airborne TEM is a supplement and development of electric source semi-airborne TEM. It has characteristics of great detective depth, strong adaptability in complex topography and high working efficiency. Based on the one-dimensional forward algorithm, the author analyzed the full-component response of parallel source and multi-source and single-source models. The results show that the curve of vertical component z is the simplest and it can be significantly strengthened with multi-source, which means this component is the most suitable one for data processing and interpretation. The most complex component is x. The curve always shows sign-changing in full field, but the magnitude can be strengthened in late stage. As the horizontal component y is most affected by current direction and receiver location, the curve shape and magnitude change are both complicated. Combined with the response characteristics of magnitude variation versus offset, it is suggested that the working area should be within the range of 5~6 times of source length. The research results in this paper can provide a reference for technical support to its application and obtain a preliminary understanding of the method.
|
Received: 01 April 2020
Published: 01 March 2021
|
|
|
|
|
|
Schematic diagram of an electric dipole on the surface of layered earth (a) and coordinatesketch of multi-source subdivision(b)
|
|
Top view of parallel sources and survey lines
|
|
Multi-component responses of parallel sources on survey line y=0 m
|
|
Multi-component responses of parallel sources on survey line y=-300 m
|
|
Multi-component responses of parallel sources on survey line y=-1000 m
|
|
Top view of angled sources and survey lines
|
|
Multi-component responses of angled sources on survey line y=0 m
|
|
Multi-component responses of angled sources on survey line y=-1 000 m
|
|
Multi-component responses at different offsets
|
[1] |
Nabighian N M. Electromagnetic methods in applied geophysics-theory(volume 1)[M]. Tulsa OK: Society of exploration, 1988.
|
[2] |
Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of mount Bandai, north-eastern Japan[J]. Exploration Geophysics, 2009,40:1-7.
|
[3] |
Allah S A, Ito H, Mogi T, et al. Three-dimensional resistivity characterization of a coastal area: Application of grounded electrical-source airborne transient electromagnetic (GREATEM) survey data from Kujukuri beach, Japan[J]. Journal of Applied Geophysics, 2013,99(3):1-11.
|
[4] |
Ito H, Mogi T, Jomori A, et al. Further investigation of underground resistivity structures in coastal areas using grounded-source airborne electromagnetics[J]. Earth Planets & Space, 2011,63(8):e9-e12.
|
[5] |
Ito H, Kaieda H, Mogi T, et al. Grounded electrical-source airborne transient electromagnetics (GREATEM) survey of Aso Volcano, Japan[J]. Exploration Geophysics, 2013,44:A-D.
|
[6] |
嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013,56(11):3640-3650.
|
[6] |
Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on unmanned airship[J]. Chinese Journal of Geophysics, 2013,56(11):3640-3650.
|
[7] |
李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013,56(9):3145-3152.
|
[7] |
Li S Y, Lin J, Yang G H, et al. Ground-airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics, 2013,56(9):3145-3152.
|
[8] |
方涛, 张建军, 付成群, 等. 无人机地空瞬变电磁系统在冶山地下巷道探测中的应用[J]. 地球物理学进展, 2015,30(5):2366-2372.
|
[8] |
Fang T, Zhang J J, Fu C Q, et al. Using ground-airborne transient electromagnetic system on unmanned aerial vehicle detecting Yeshan underground tunnels[J]. Progress in Geophysics, 2015,30(5):2366-2372.
|
[9] |
刘金鹏. 电性源地空瞬变电磁法在采空区探测中的应用[D]. 西安:长安大学, 2018.
|
[9] |
Liu J P. The application of ground-airborne transient electromagnetic method with electric source in the gobs detection[D]. Xi’an: Chang’an University, 2018.
|
[10] |
吴启龙. 半航空瞬变电磁视电阻率成像及在复杂地形区域隧道勘察中的应用[D]. 济南:山东大学, 2019.
|
[10] |
Wu Q L. Semi-Airborne transient electromagnetic apparent resistivity imaging and its application in tunnel survey in complex terrain areas[D]. Jinan: Shandong University, 2019.
|
[11] |
刘天佑. 地球物理勘探概论[M]. 北京: 地质出版社, 2007.
|
[11] |
Liu T Y. Introduction to geophysical exploration[M]. Beijing: Geological Publishing House, 2007.
|
[12] |
Kaufman A A, Keller G V. 频率域和时间域电磁测深[M].王建谋,译. 北京: 地质出版社, 1987.
|
[12] |
Kaufman A A, Keller G V. Electromagnetic sounding in frequency and time domain[M].Wang J M. Beijing: Geological Publishing House, 1987.
|
[13] |
Um E S. On the physics of galvanic source electromagnetic geophysical methods for terrestrial and marine exploration[D]. Madison:University of Wisconsin-Madison, 2005.
|
[14] |
Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical source airborne EM(GREATEM)[J]. Exploration Geophysics, 1998,29:61-64.
|
[15] |
刘富波, 李巨涛, 刘丽华, 等. 无人机平台半航空瞬变电磁勘探系统及其应用[J]. 地球物理学进展, 2017,32(5):2222-2229.
|
[15] |
Liu F B, Li J T, Liu L H, et al. Development and application of a new semi-airborne transient electromagnetic system with UAV platform[J]. Progress in Geophysics, 2017,32(5):2222-2229.
|
[16] |
吴寿勇. 半航空电磁勘查系统数据采集关键技术研究[D]. 成都:成都理工大学, 2014.
|
[16] |
Wu S Y. Research of data acquisition key technologies of half aviation electromagnetic exploration system[D]. Chengdu:Chengdu University of Technology, 2014.
|
[17] |
李琳琳. 半航空瞬变电磁发射机关键技术研究[D]. 成都:成都理工大学, 2015.
|
[17] |
Li L L. Study on the key technology of the GREATEM transmitter[D]. Chengdu:Chengdu University of Technology, 2015.
|
[18] |
王金梅. 无人机半航空瞬变电磁信号接收技术研究[D]. 成都:成都理工大学, 2018.
|
[18] |
Wang J M. The research on receiving technology of semi-airborne transient electromagnetic receiver[D]. Chengdu: Chengdu University of Technology, 2018.
|
[19] |
张莹莹, 李貅. 地空瞬变电磁法研究进展[J]. 地球物理学进展, 2017,32(4):1735-1741.
|
[19] |
Zhang Y Y, Li X. Research progress on ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2017,32(4):1735-1741.
|
[20] |
阳贵红. 时域电性源地-空电磁探测数据预处理研究[D]. 长春:吉林大学, 2012.
|
[20] |
Yang G H. Data preprocessing research on electrical-source of time domain ground-airborne electromagnetic[D]. Changchun: Jilin University, 2012.
|
[21] |
张莹莹. 水平电偶源地空系统瞬变电磁法多分量解释技术及全域视电阻率定义研究[D]. 西安:长安大学, 2013.
|
[21] |
Zhang Y Y. Study on multi-component interpretation and full field apparent resistivity definition of semi-airborne transient electromagnetic method with electrical dipole on the surface[D]. Xi’an: Chang’an University, 2013.
|
[22] |
张莹莹, 李貅, 姚伟华, 等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报, 2015,58(8):2745-2758.
|
[22] |
Zhang Y Y, Li X, Yao W H, et al. Multi-component full field apparent resistivity definition of multi-source ground-airborne transient electromagnetic method with galvanic sources[J]. Chinese Journal of Geophysics, 2015,58(8):2745-2758.
|
[23] |
宿传玺. 浅层岩溶半航空瞬变电磁响应规律与试验研究[D]. 济南:山东大学, 2018.
|
[23] |
Su C X. Responses and experimental studies of semi-airborne transient electromagnetic for shallow karst[D]. Jinan: Shandong University, 2018.
|
[24] |
曹凤凤. 地空瞬变电磁起伏地形效应的特征研究[D]. 西安:长安大学, 2019.
|
[24] |
Cao F F. Study on characteristics of rugged terrain effect of ground-airborne transient electromagnetic[D]. Xi’an: Chang’an University, 2019.
|
[25] |
李貅, 张莹莹, 卢绪山, 等. 电性源瞬变电磁地空逆合成孔径成像[J]. 地球物理学报, 2015,58(1):277-288.
|
[25] |
Li X, Zhang Y Y, Lu X S, et al. Inverse synthetic aperture imaging of ground-airborne transient electromagnetic method with a galvanic source[J]. Chinese Journal of Geophysics, 2015,58(1):277-288.
|
[26] |
张莹莹. 地空瞬变电磁逆合成孔径成像方法研究[D]. 西安:长安大学, 2016.
|
[26] |
Zhang Y Y. Study on inverse synthetic aperture imaging of ground-airborne transient electromagnetic method[D]. Xi’an: Chang’an University, 2016.
|
[27] |
张莹莹, 李貅, 李佳, 等. 多辐射场源地空瞬变电磁法快速成像方法研究[J]. 地球物理学进展, 2016,31(2):869-876.
|
[27] |
Zhang Y Y, Li X, Li J, et al. Fast imaging technique of multi-source ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2016,31(2):869-876.
|
[28] |
吕仁斌. 半航空瞬变电磁数据处理及快速成像方法研究[D]. 成都:成都理工大学, 2017.
|
[28] |
Lyu R B. Research on rapid simulation and data processing of semi-aerial transient electromagnetic[D]. Chengdu: Chengdu University of Technology, 2017.
|
[29] |
嵇艳鞠, 徐江, 吴琼, 等. 基于神经网络电性源半航空视电阻率反演研究[J]. 电波科学学报, 2014,29(5):973-980.
|
[29] |
Ji Y J, Xu J, Wu Q, et al. Apparent resistivity inversion of electrical source semi-airborne electromagnetic data based on neutral network[J]. Chinese Journal of Radio Science, 2014,29(5):973-980.
|
[30] |
徐江. 基于人工神经网络电性源半航空视电阻率反演方法研究[D]. 长春:吉林大学, 2014.
|
[30] |
Xu J. Apparent resisitivity inversion research of electrical-source of semi-airborne transient electromagnetic based on neutral network method[D]. Changchun: Jilin University, 2014.
|
[31] |
许洋. 半航空一维正反演研究[D]. 成都:成都理工大学, 2014.
|
[31] |
Xu Y. Study about 1D forward and inversion of SATEM[D]. Chengdu: Chengdu University of Technology, 2014.
|
[32] |
李佳. 多辐射场源地空瞬变电磁一维反演方法研究[D]. 西安:长安大学, 2017.
|
[32] |
Li J. Study on 1D inversion of multi-source grounded-airborne transient electromagnetic method[D]. Xi’an: Chang’an University, 2017.
|
[33] |
赵涵, 景旭, 李貅, 等. 多辐射场源地空瞬变电磁一维反演方法研究[J]. 物探与化探, 2019,43(1):132-142.
|
[33] |
Zhao H, Jing X, Li X, et al. A study of 1D inversion of multi-source ground-airborne transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2019,43(1):132-142.
|
[34] |
张澎, 余小东, 许洋, 等. 半航空时间域电磁数据一维自适应正则化反演物[J]. 物探化探计算技术, 2017,39(1):1-8.
|
[34] |
Zhang P, Yu X D, Xu Y, et al. An adaptive regularized inversion of 1D semi-airborne time-domain electromagnetic data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017,39(1):1-8.
|
[35] |
Abdallah S, Mogi T, Kim H J. Three-dimensional inversion of GREATEM data:Application to GREATEM survey data from Kujukuri Beach,Japan[J]. Applied Earth Observations and Remote Sensing, 2017,99:1-7.
|
[36] |
Guptasarma D, Singh B. New digital linear filters for Hankel J0 and J1 transforms[J]. Geophysical Prospecting, 1997,45:745-762.
|
[37] |
王华军. 正余弦变换的数值滤波算法[J]. 工程地球物理学报, 2004,1(4):329-335.
|
[37] |
Wang H J. Digital filter algorithm of the sine and cosine transform[J]. Chinese Journal of Engineering Geophysics, 2004,1(4):329-335.
|
[38] |
Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical source airborne transient EM (GREATEM)[J]. Exploration Geophysics, 1998,29:61-64.
|
[1] |
XU Xue-Yi, XIONG Sheng-Qing, YANG Xue, GAO Wei-Hong, FAN Zheng-Guo, JIA Zhi-Ye. Aerogeophysical anomalies and prospecting direction in the Fengtai ore concentration area[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1157-1168. |
[2] |
WANG Shi-Xing, HE Ke, YIN Xiao-Kang, WEI Dong-Hua, ZHAO Si-Wei, GUO Ming. One-dimensional focusing inversion of the semi-airborne transient electromagnetic method and its application[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 410-419. |
|
|
|
|