|
|
A case analysis of multielectrode resistivity method for determining a well location in groundwater prospecting in the ore concentration area of Guyang County, Baotou City |
WANG Wen-Jie( ), HAO Yi, BO Hai-Jun, WANG Hai-Long, XU Hao-Qing, LI Yong-Li, MAO Lei, Liu Yong-Xin, YUAN Shuai( ) |
Hohhot Natural Resources Comprehensive Survey Center,China Geological Survey ,Hohhot 010010,China |
|
|
Abstract In order to find out the stratigraphic structure and groundwater pollution in the ore concentration area of Guyang County, Baotou City, it is necessary to carry out hydrogeological drilling around typical mines in the ore concentration area. In this paper, according to different types of groundwater-finding targets and the advantages of different measuring devices in resolution and signal-to-noise ratio, the multielectrode resistivity method was employed to study and analyze the electrical structure characteristics and well forming pattern of groundwater around south concentrator of Wengeqi iron deposit, Hongchang concentrator and Shangshierfenzi gold deposit. The result shows that comprehensive analysis of the hydrogeological conditions of the study area and utilization of different arrays of multielectrode resistivity method seem to be effective technical means for carrying out water resources investigation, which can achieve the target, reduce the multi-solution of geophysical inversion and interpretation, greatly improve the efficiency of searching for groundwater resources by using single geophysical method and provide a technical basis for water exploration and well determination in the ore concentration area of Guyang County, Baotou City.
|
Received: 05 February 2021
Published: 20 August 2021
|
|
Corresponding Authors:
YUAN Shuai
E-mail: Wangwenjie_cugb@163.com;YUANSHUAIcugb@163.com
|
|
|
|
|
Geological structure diagram of Guyang, Baotou(Geo-Environment Monitoring Institute of Inner Mongolia, 1988)
|
|
Hydrogeological zoning map of Guyang, Baotou(Geo-environment monitoring institute of Inner Mongolia, 1988)
|
年代地层 | 岩层含水描述 | | 第四系全新统(Qh) | 砂砾石孔隙潜水含水层 | 新生界 | 第四系更新统(Qp) | 砂砾石孔隙潜水含水层 | | 新近系上新统(N2) | 不连续砂砾岩、砂质泥岩孔隙裂隙含水层 | | 白垩系下统(K1) | 不连续的砂砾岩、砂岩层间承压水含水岩组 | 中生界 | 侏罗系中上统(J2-3) | 火山碎屑岩裂隙潜水含水岩层 | | 震旦系(Z) | 灰岩、板岩、石英岩石裂隙水含水岩系 | 元古宇 | | 变质岩系裂隙水含水岩系 | 太古宇 | | 变质岩系裂隙水含水岩系 |
|
List of water bearing strata in the study area
|
地层单位 | 代号 | 岩性 | 平均视电阻率 /(Ω·m) | 变化范围 /(Ω·m) | 第四系 | | Q | 砾石、黏土、砂土层 | 560※ | 110~1788※ | 古近系 | | E | 砾岩、砂砾岩 | 310※ | 306~675※ | 白垩系 | 固阳组 | K1g | 细砾岩、含砾砂岩 | 360 | 219~559 | 粉砂岩 | 830 | 157~1012 | 李三沟组 | K1l | 砾岩 | 270 | 168~560 | 粉砂质泥岩 | 86 | 59~322 | 侏罗系 | 大青山组 | J3d | 砾岩 | 377 | 235~679 | 中粗粒砂岩 | 458 | 225~773 | 粉砂岩 | 1179 | 378~1643 | 粉砂质泥岩 | 186 | 116~467 | 长汉沟组 | J3c | 泥岩 | 47※ | 19~115※ | 粉砂岩 | 992 | 150~1638 | 召沟组 | J2zh | 粗砂岩 | 178 | 146~793 | 粉砂岩 | 927 | 469~1778 | 灰岩 | 650 | 18~2044 | 武当沟组 | J1w | 含砾砂岩 | 298 | 187~675 | 页岩/泥岩 | 38※ | 28~119※ | 中太古界 | 乌拉山岩群 | Ar2w | 浅色片麻岩岩组 | 2031 | 863~3369 | 深色片麻岩岩组(不含水) | 1625 | 1147~2056 | 深色片麻岩岩组(含水) | 207※ | 150~500※ |
|
Apparent resistivity parameters of main formation rocks in the study area
|
|
Schematic diagram of multielectrode resistivity exploration system
|
测线 | 赋水类型 | 水文地质分区 | 装置类型 | 点距/m | 控制长度/m | GPM001 | 孔隙承压水 | 白垩系下统砂砾岩孔隙层间承压水区 | 温纳装置 | 15 | 1035 | GPM002 | 孔隙承压水 | 白垩系下统砂砾岩孔隙层间承压水区 | 温纳装置 | 15 | 1005 | GPM003 | 裂隙承压水 | 基岩裂隙及火成岩碎屑岩裂隙水区 | 温纳装置 偶极—偶极装置 | 15 | 825 |
|
Array list of multielectrode resistivity method of survey profile
|
|
Regional geological map and work deployment area of South Concentrator of Wengeqi Iron Mine and Hongchang Concentrator
|
|
GMP001 comprehensive section
|
|
High-density inversion resistivity sounding curve of selected well
|
层号 | 顶底埋深/m | 岩性 | 层号 | 顶底埋深/m | 岩性 | 1 | 0~13.35 | 回填土、砂卵砾石 | 13 | 88.7~90.7 | 泥质粉砂岩 | 2 | 13.35~23.25 | 含砾岩屑砂岩 | 14 | 90.7~93.1 | 含砾细砂岩 | 3 | 23.25~28.10 | 泥质粉砂岩 | 15 | 93.1~95.25 | 粉砂岩 | 4 | 28.10~29.25 | 泥岩 | 16 | 95.25~105 | 含砾粉砂岩 | 5 | 29.25~46 | 含砾岩屑砂岩 | 17 | 105~113.85 | 泥质粉砂岩 | 6 | 46~48.2 | 泥质岩屑砂岩 | 18 | 113.85~121.2 | 细砂岩 | 7 | 48.2~53.9 | 粉砂岩 | 19 | 121.2~125.25 | 泥质粉砂岩 | 8 | 53.9~55.1 | 泥质粉砂岩 | 20 | 125.25~134.25 | 粉砂质泥岩 | 9 | 55.1~68.25 | 粉砂岩 | 21 | 134.25~140.25 | 粉砂岩 | 10 | 68.25~78.70 | 泥质粉砂岩 | 22 | 140.25~146.25 | 泥质粉砂岩 | 11 | 78.70~80.25 | 粉砂质泥岩 | 23 | 146.25~150.0 | 粉砂质泥岩 | 12 | 80.25~88.7 | 含砾细砂岩 | | | |
|
Lithology of SZK001 borehole
|
|
GMP002 comprehensive section
|
层号 | 顶底埋深/m | 岩性 | 层号 | 顶底埋深/m | 岩性 | 1 | 0~9 | 砂砾岩 | 9 | 36~85 | 砂砾岩 | 2 | 9~13 | 粉砂质泥岩 | 10 | 85~97 | 粗砂岩 | 3 | 13~15 | 灰绿色泥岩 | 11 | 97~103 | 中砂岩 | 4 | 15~23 | 页岩 | 12 | 103~121 | 细砂岩 | 5 | 23~26 | 灰绿色泥岩 | 13 | 121~127 | 粉砂岩 | 6 | 26~29 | 粉砂质泥岩 | 14 | 127~148 | 细砂岩 | 7 | 29~31 | 灰绿色泥岩 | 15 | 148~150 | 粉砂岩 | 8 | 31~36 | 泥质砂岩 | | | |
|
Lithology of SZK002 borehole
|
|
Regional Geological Map and Work Deployment Scope of ShangShiErFenZi gold mine
|
|
Comprehensive cross section of GMP003
|
层号 | 顶底埋深/m | 岩性 | 层号 | 顶底埋深/m | 岩性 | 1 | 0~11 | 第四系砾石土 | 6 | 50~63 | 角闪变粒岩 | 2 | 11~18 | 角闪斜长片麻岩 | 7 | 63~98 | 角闪斜长片麻岩 | 3 | 18~24 | 断层破碎带 | 8 | 98~123 | 辉绿岩 | 4 | 24~38 | 钾长浅粒岩 | 9 | 123~150 | 角闪二长片麻岩 | 5 | 38~50 | 角闪二长片麻岩 | | | |
|
Lithology of SZK003 borehole
|
[1] |
宋云峰, 武爱华, 李雪梅. 变质岩山区高密度电法找水案例[J]. 山东农业大学学报:自然科学版, 2014,45(2):272-275.
|
[1] |
Song Y F, Wu A H, Li X M. Case of metamorphic rock mountain high density electrical method in water exploration[J]. Journal of Shandong Agricultural University:Natural Science Edition, 2014,45(2):272-275.
|
[2] |
苏永军, 马震, 孟利山, 等. 高密度电阻率法和激发极化法在抗旱找水定井位中的应用[J]. 现代地质, 2015,29(2):265-271.
|
[2] |
Su Y J, Ma Z, Meng L S, et al. Application of high-density resistivity method and induced polarization method to determine a good well location in groundwater prospecting[J]. Geoscienc, 2015,29(2):265-271.
|
[3] |
曹新文, 马秀敏, 彭华, 等. 山东蓬莱玄武岩覆盖区高密度电法找水效果分析[J]. 地球物理学进展, 2018,33(6):342-348.
|
[3] |
Cao X W, Ma X M, Peng H, et al. Effect analysis of high-density resistvity method to groundwater exploration in basalt area Penglai Shangdong province[J]. Progress in Geophysics, 2018,33(6):342-348.
|
[4] |
郑智杰, 曾洁, 赵伟, 等. 高密度电法在岩溶区找水中的应用研究[J]. 地球物理学进展, 2019,34(155):416-421.
|
[4] |
Zheng Z J, Zeng J, Zhao W, et al. Application research of high density resistivity method in water exploring in karst area[J]. Progress in Geophysics, 2019,34(155):416-421.
|
[5] |
岳茂华. 内蒙古自治区包头市固阳县区域水文地质调查报告[R]. 内蒙古自治区环境地质研究所, 1998.
|
[5] |
Yue M H. Regional hydrogeological survey report of Guyang, Baotou, Inner Mongolia[R]. Environmental Geology Institute of Inner Mongolia, 1998.
|
[6] |
张树民. 内蒙古自治区固阳县农田供水水文地质普查报告书[R]. 内蒙古自治区水文地质勘探队, 1974.
|
[6] |
Zhang S M. Hydrogeological survey report of farmland water supply in Guyang, Inner Mongolia[R]. Hydrogeological Exploration Team of Inner Mongolia, 1974.
|
[7] |
邓娜, 江长森. 高密度电法在工程勘察中的应用实例[J]. 物探化探计算技术, 2009,31(6):577-581,3.
|
[7] |
Deng N, Jiang C S. The case studies of high density resistivity method in engineering exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2009,31(6):577-581,3.
|
[8] |
董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003,10(1):171-176.
|
[8] |
Dong H B, Wang C L. Development and application of 2d resistivity imaging surveys[J]. Earth Science Frontiers, 2003,10(1):171-176.
|
[9] |
张胜业. 应用地球物理学原理[M]. 武汉: 中国地质大学出版社, 2004.
|
[9] |
Zhang S Y. Principles of applied geophysics [M]. Wuhan: China University of Geosciences Press, 2004.
|
[10] |
葛如冰, 黄伟义, 张玉明. 高密度电阻率法在灰岩地区的应用研究[J]. 物探与化探, 1999,23(1):29-33,38.
|
[10] |
Ge R B, Huang W Y, Zhang Y M. The study of the application of high density resistivity method to the limestone area[J]. Geophysical and Geochemical Exploration, 1999,23(1):29-33,38.
|
[11] |
宋希利, 宋鹏, 田明阳, 等. 物探方法在侵入岩地区抗旱找水定井中的应用[J]. 地球物理学进展, 2012,27(3):1280-1286.
|
[11] |
Song X L, Song P, Tian M Y, et al. Geophysical prospecting method in intrusive rocks area fight a drought to find water wells set[J]. Progress in Geophysics, 2012,27(3):1280-1286.
|
[12] |
余京. 综合物探在岩溶断层中找水的研究及其应用[J]. 地下空间与工程学报, 2017,13(s1):442-445.
|
[12] |
Yu J. Research and application of comprehensive geophysical exploration technique to find water at karst fault[J]. Chinese Journal of Underground Space and Engineering, 2017,13(s1):442-445.
|
[13] |
焦彦杰, 吴文贤, 杨剑, 等. 云南岩溶石山区物探找水方法与实例分析[J]. 中国地质, 2011,38(3):770-778.
|
[13] |
Jiao Y J, Wu W X, Yang J, et al. Geophysical water exploration methods in stone mountain karst areas and case analysis[J]. Chinese Geology, 2011,38(3):770-778.
|
[14] |
李富, 邓国仕, 袁建飞, 等. 确定探采结合井位的综合物探方法技术研究——以乌蒙山区为例[J]. 地球物理学进展, 2018,33(3):1218-1225.
|
[14] |
Li F, Deng G S, Yuan J F, et al. Combination of exploration and mining technology research method of geophysical exploration wells:In Wumeng mountain area as an example[J]. Progress in Geophysics, 2018,33(3):1218-1225.
|
[15] |
李宏恩, 徐海峰, 李铮, 等. 地面核磁共振法与高密度电法联合探测堤坝渗漏隐患原位试验研究[J]. 地球物理学进展, 2019,34(4):1627-1634.
|
[15] |
Li H E, Xu H F, Li Z, et al. In situ experimental study on resistivity-magnetic resonance sounding coupling imaging diagnosis method for an embankment dam with seepage defects[J]. Progress in Geophysics, 2019,34(4):1627-1634.
|
[16] |
冼诗盛. 高密度电法在复杂地质构造条件下的找水效果[J]. 地质与资源, 2015,24(2):132-136.
|
[16] |
Xie S H. Application of high-density electrical method in groundwater exploration under complex geologic structural conditions[J]. Geology and Resources, 2015,24(2):132-136.
|
[17] |
周乐, 朱庆俊, 罗旋, 等. 山东莱芜盆地古近系大汶口组含水层找水实例分析:以口镇官水河村为例[J]. 中国矿业, 2020,29(s1):309-311,316.
|
[17] |
Zhou L, Zhu Q J, Luo X, et al. Case study of water exploration in Dawenkou formation aquifer of Paleogene in Laiwu basin, with an example of Guanshuihe village, Kouzhen, Shandong province[J]. China Mining Magazine, 2020,29(s1):309-311,316.
|
[18] |
张彪, 刘良志, 倪进鑫, 等. 综合物探方法在花岗岩严重缺水地区找水勘查中的应用[J]. 工程地球物理学报, 2015,12(4):501-507.
|
[18] |
Zhang B, Liu L Z, Ni J X, et al. The application of comprehensive geophysical prospecting method to water exploration in the granite severe water shortage region[J]. Chinese Journal of Engineering Geophysics, 2015,12(4):501-507.
|
[19] |
陈松, 刘磊, 刘怀庆, 等. 北部湾咸淡水分界面划分中的电法应用分析[J]. 地球物理学进展, 2019,34(4):1592-1599.
|
[19] |
Chen S, Liu L, Liu H Q, et al. Application analysis of electrical method in dividing saltwater and freshwater interface in beibu bay[J]. Progress in Geophysics, 2019,34(4):1592-1599.
|
[20] |
王平, 史俊平, 李云鹏, 等. 物探方法组合在清水河缺水地区找水勘查应用效果[J]. 西部资源, 2013(3):159-161.
|
[20] |
Wang P, Shi J P, Li Y P, et al. Application effect of water prospecting in Qingshuihe water shortage region by comprehensive geophysical methlds[J]. Westen Resources, 2013(3):159-161.
|
[21] |
康小兵, 许模, 谯勉江, 等. 物探方法在西藏阿里地区地下水资源调查中的应用[J]. 工程勘察, 2007(9):70-73.
|
[21] |
Tang X B, Xu D, Qiao M J, et al. Application of geophysical methods in groundwater resource investigation of ali area, tibet[J]. Geotechnical Investigation & Surveying, 2007(9):70-73.
|
[22] |
邬健强, 赵茹玥, 甘伏平, 等. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020,44(1):93-98.
|
[22] |
Wu J Q, Zhao R Y, Gan F P, et al. The application of electrical prospecting method to groundwater exploration in karst mountainous areas: A case study of Changtang Village, Huaihua area, Hunan Province[J]. Geophysical and Geochemical Exploration, 2020,44(1):93-98.
|
[23] |
孙仁斌, 楚丽霞, 王宁, 等. 时间域激电测深二维反演在内蒙古兴和盆地贫水区找水勘查中若干案例研究[J]. 地球物理学进展, 2017,32(1):387-394.
|
[23] |
Sun R B, Chu L X, Wang N, et al. 2D inversion of IP-resistivity sounding in water exploration of Xinghe basin in Inner Mongolia[J]. Progress in Geophysics, 2017,32(1):387-394.
|
[24] |
李凤哲, 朱庆俊, 孙银行. 西南岩溶山区物探找水效果[J]. 物探与化探, 2013,37(4):591-595.
|
[24] |
Li F Z, Zhu Q J, Sun Y H, et al. The effects of geophysical water exploration in karst mountain areas of southwest china[J]. Geophysical and Geochemical Exploration, 2013,37(4):591-595.
|
[25] |
杨剑, 王永华, 焦彦杰, 等. EH4电磁系统在西南抗旱救灾找水中的应用[J]. 物探与化探, 2011,35(6):754-757.
|
[25] |
Yang J, Wang Y H, Jiao Y J, et al. The application of eh4 electromagnetism to water resource exploration and drought resistance in southwest china[J]. Geophysical and Geochemical Exploration, 2011,35(6):754-757.
|
[26] |
刘得福, 吕旭红, 任多魁. 综合电法在祁连山山前缺水区寻找地下水的应用[J]. 物探与化探, 2006,30(1):41-44.
|
[26] |
Liu D F, Lyu X H, Reng D K. The application of integrated electrical method to the exploration of underground water in the piedmont water-deficient regionof the qilian mountains[J]. Geophysical and Geochemical Exploration, 2006,30(1):41-44.
|
[1] |
XU Xue-Yi, XIONG Sheng-Qing, YANG Xue, GAO Wei-Hong, FAN Zheng-Guo, JIA Zhi-Ye. Aerogeophysical anomalies and prospecting direction in the Fengtai ore concentration area[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1157-1168. |
[2] |
QIN Xi-She, MA Jie, GUO Wen-Bo, QI Zhi-Peng, CAO Hua-Ke. Definition of full-field apparent resistivity of controlled source magnetotellurics based on inverse function principle[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 373-382. |
|
|
|
|