|
|
An analysis of the detection effect of cross-well electromagnetic wave CT in coal mine goaf |
ZHAO Xu-Chen1( ), LI Xue-Jian2, CAO Fang-Zhi3, LEI Xiao-Dong1( ), LI Chen1, HAN Yu-Da1 |
1. Beijing Institute of Geo-exploration Technology, Beijing 100120, China 2. Shenhua Baorixile Energy Co., Ltd., Hulun Buir 021025, China 3. CNBM Geological Engineering Exploration Academy Co., Ltd., Beijing 100102, China |
|
|
Abstract In an open-pit coal mine in Hulun Buir of Inner Mongolia, the main mining coal seams are buried in depths ranging from 39m to 90m. Before coal mine integration, predatory mining has left many mined areas with unknown geological data, and the existence of mined-out areas has brought huge safety hazards to open-pit mining stripping. In order to find out the specific location and connectivity of the underground goaf, the authors used the cross-hole electromagnetic wave CT method to probe into the inside of the goaf in detail, and obtained a lot of real and reliable geophysical data. The analytical result shows that relatively complete rock formation electromagnetic wave absorption coefficient is in the range of 0.44~0.51Nper/m, and no water-filled goaf electromagnetic wave absorption coefficient is in the range of 0.29~0.40 Nper/m. According to the difference of electromagnetic wave absorption coefficient between goaf and surrounding rocks, the authors drew the morphological interpretation map of the goaf, and the results are basically consistent with the drilling data.
|
Received: 05 February 2021
Published: 20 August 2021
|
|
Corresponding Authors:
LEI Xiao-Dong
E-mail: zxc454606073@qq.com;leixiaodong@139.com
|
|
|
|
|
Ray distribution diagram between holes(a) and gridded model of electromagnetic wave CT(b)
|
|
Stratigraphic diagram of the study area
|
|
Electromagnetic wave energy curve diagram at different operating frequencies
|
|
Location map of the drilling
|
|
The contour map of attenuation coefficient distribution among F5-F4-E4-D4-D5-E5-F5 boreholes(a) and Interpretation result diagram(b)
|
|
The contour map of attenuation coefficient distribution among P11-Q11-Q12 boreholes(a) and Interpretation result diagram(b)
|
|
The contour map of attenuation coefficient distribution among D15-D14-C14 boreholes(a) and Interpretation result diagram(b)
|
钻孔 | CT显示异常区深度 | 钻探掉钻深度 | 重合范围 | 重合高度 | F5 | 47.0~51.0 | 47.0~52.0 | 47.0~51.0 | 4 | F4 | 46.5~49.0 | 45.5~49.5 | 46.5~49.0 | 2.5 | E4 | 48.0~49.0 | 48.0~51.0 | 48.0~49.0 | 1 | D4 | 46.5~50.0 | 45.5~48.5 | 46.5~48.5 | 2 | D5 | 48.0~51.0 | 48.0~52.0 | 48.0~51.0 | 3 | E5 | 49.0~51.0 | 50.0~54.0 | 50.0~51.0 | 1 | P11 | 59.0~60.0 | 59.5~63.0 | 59.5~60.0 | 0.5 | Q11 | 56.5~60.0 | 54.0~58.5 | 56.5~58.5 | 2 | Q12 | 56.5~60.0 | 58.0~60.0 | 58.0~60.0 | 2 | D15 | 53.0~58.0 | 54.0~62.0 | 54.0~58.0 | 4 | D14 | 48.0~54.0 | 49.0~54.0 | 49.0~54.0 | 5 | C14 | 51.0~56.0 | 52.0~60.0 | 52.0~56.0 | 2 |
|
Comparison table of electromagnetic wave CT abnormal area and borehole datam
|
[1] |
刘四新, 倪建福. 井间电磁法综述[J]. 地球物理学进展, 2020,35(1):153-165.
|
[1] |
Liu S X, Ni J F. Review for cross-hole electromagnetic method[J]. Progress in Geophysics, 2020,35(1):153-165.
|
[2] |
郭贵安, 魏柏林. 井间电磁波CT技术在溶洞探测中的应用[J]. 华南地震, 1999,19(4):28-34.
|
[2] |
Guo G A, Wei B L. Prospecting corroded cavities using cross-section electromagnetic tomographic technique between boreholes[J]. South China Journal of Seismology, 1999,19(4):28-34.
|
[3] |
何禹, 李永涛, 朱亚军. 钻孔电磁波CT技术在深部岩溶勘探中的应用[J]. 工程地球物理学报, 2010,7(4):451-455.
|
[3] |
He Y, Li Y T, Zhu Y J. Application of drilling electromagnetic CT to deep cavern and fracture prospecting[J]. Chinese Journal of Engineering Geophysics, 2010,7(4):451-455.
|
[4] |
李永涛, 陶喜林, 俞建河, 等. 井间电磁波CT技术在长江大堤岩溶探测中的应用[J]. CT理论与应用研究, 2009,18(1):55-62.
|
[4] |
Li Y T, Tao X L, Yu J H, et al. Application of cross-borehole electromagnetic computerized tomography in karst detection along Yangtze river levee[J]. Computerized Tomography Theory and Applications, 2009,18(1):55-62.
|
[5] |
邱恩喜, 谢强, 文江泉. 电测深法和电磁波CT法在采空区注浆加固效果检测中的综合应用[J]. 工程地质学报, 2007,15(6):834-839.
|
[5] |
Qiu E X, Xie Q, Wen J Q. Application of the combination of electric sounding and electromagnetic CT in detection of grouting quality[J]. Journal of Engineering Geology, 2007,15(6):834-839.
|
[6] |
李玉成. 钻孔电磁波技术在水泥浆灌注质量检测中的应用[J]. 物探与化探, 2018,42(3):640-644.
|
[6] |
Li Y C. Quality test of cement slurry grouting in limestone foundation[J]. Geophysical and Geochemical Exploration, 2018,42(3):640-644.
|
[7] |
黄生根, 胡永健, 付卓, 等. 电磁波CT技术在钻孔灌注桩后压浆效果检测中的应用研究[J]. 岩土工程学报, 2019,41(1):225-228.
|
[7] |
Huang S G, Hu Y J, Fu Z, et al. Application of cross-hole electromagnetic wave CT in detection of post-grouting effect[J]. Chinese Journal of Geotechnical Engineering, 2019,41(1):225-228.
|
[8] |
薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018,33(5):2187-2192.
|
[8] |
Xue G Q, Pan D M, Yu J C. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018,33(5):2187-2192.
|
[9] |
吴茂林, 胡富彭, 胡雄武. 城市地下空间地质异常体井间综合CT探查[J]. 工程地球物理学报, 2018,15(6):812-816.
|
[9] |
Wu M L, Hu F P, Hu X W. Integrated CT exploration of urban underground space geology anomaly[J]. Chinese Journal of Engineering Geophysics, 2018,15(6):812-816.
|
[10] |
顾孝同. 国内工程CT技术的发展与应用[J]. 工程地球物理学报, 2006,3(4):278-282.
|
[10] |
Gu X T. Developments and applications of engineering CT technologies[J]. Chinese Journal of Engineering Geophysics, 2006,3(4):278-282.
|
[11] |
赵威. 电磁波CT集中常用成像方法应用效果对比[J]. 工程地球物理学报, 2019,16(5):749-754.
|
[11] |
Zhao W. Comparison of application effects of several common electromagnetic wave CT imaging methods[J]. Chinese Journal of Engineering Geophysics, 2019,16(5):749-754.
|
[12] |
雷旭友. 多源多孔对联合反演方法及其在电磁波层析成像中的应用[D]. 成都:成都理工大学, 2010.
|
[12] |
Lei X Y. A joint inversion based on the data of multi-source and multi-crosshole and its application in the electromagnetic tomography[D]. Chengdu: Chengdu University of Technology, 2010.
|
[13] |
陈春飞, 沈晓武, 张秉政. 基于电磁波层析成像技术的岩溶探测正演模拟及应用研究[J]. 工程地球物理学报, 2021,18(1):98-106.
|
[13] |
Chen C F, Shen X W, Zhang B Z. Forward modeling and application research in karst detection based on electromagnetic wave tomography technique[J]. Chinese Journal of Engineering Geophysics, 2021,18(1):98-106.
|
[14] |
彭永良, 胡卸文, 宋大各, 等. 大型复杂采空区注浆效果检测方法研究[J]. 工程地质学报, 2013,21(4):664-671.
|
[14] |
Peng Y L, Hu X W, Song D G, et al. Inspection method for grouting effect in treating large complicated cavities due to mining[J]. Journal of Engineering Geology, 2013,21(4):664-671.
|
[15] |
臧德福, 张庆乐, 晁永胜, 等. 井间电磁成像系统发射和接收同步测量应用研究[J]. 地球物理学进展, 2020,35(4):1631-1636.
|
[15] |
Zang D F, Zhang Q L, Chao Y S, et al. Applied research on synchronous measurement of transmitter and receiver of cross-well electromagnetic tomography system[J]. Progress in Geophysics, 2020,35(4):1631-1636.
|
[16] |
吴岩, 顾汉明, 刘铁, 等. 电磁波CT在碳酸盐岩缝洞勘察中的应用[J]. 工程地球物理学报, 2009,6(2):185-189.
|
[16] |
Wu Y, Gu H M, Liu T, et al. Application of electromagnetic CT to cavern and fracture prospecting in carbonate rock[J]. Chinese Journal of Engineering Geophysics, 2009,6(2):185-189.
|
[1] |
ZHANG Fan, FENG Guo-Rui, QI Ting-Ye, YU Chuan-Tao, ZHANG Xin-Jun, WANG Chao-Yu, DU Sun-Wen, ZHAO De-Kang. Feasibility of the transient electromagnetic method in the exploration of double-layer waterlogged goafs with different layer spacings in coal mines[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1215-1225. |
[2] |
Qi Zhao-Hua. Application of the wide-field electromagnetic method in hydrogeological exploration under the extremely-thick low-resistivity layer: A case study of a coal mine in the Huainan area, Anhui Province[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 700-706. |
|
|
|
|