|
|
Distribution and sources of heavy metals in greenbelt soil in different functional zones of Tianjin City |
HOU Jia-Yu1( ), YANG Yao-Dong2( ), CHENG Xu-Jiang3 |
1. Tianjin Center of Geological Affairs, Tianjin 300042, China 2. Tianjin Geological Mineral Test Center, Tianjin 300191, China 3. Tianjin Institute of Geological Survey, Tianjin 300191, China |
|
|
Abstract This study investigated the elements of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in greenbelt soil in five types of functional zones in the urban area of Tianjin City, namely residential and educational zones, traffic greenbelts, industrial zones, parks, and river banks. The results are as follows. The overall accumulationof heavy metals in the greenbelt soil is in the order Hg>Cd>Pb>Zn>Cu, with the average content of As, Cr, and niapproximating to the background values. Pb, Zn, Cu, and as have the highest content in the greenbelt soil in industrial zones, while Cd, Hg, Ni, and Cr have the highest content in river banks. Heavy metals mainly migrate intogreenbelt soil by means of atmospheric deposition.Moreover, the accumulation coefficient of heavy metals in greenbelt soil is significantly correlated with the ratio of the average content of heavy metals in atmospheric deposition and the background value of the heavy metals in the soil. Meanwhile, the difference in heavy metal content between the greenbelt soil in different functional zones are mainly caused bythe difference in the quantity of the heavy metals in the atmospheric deposition. Besides, the greenbelt soil on river banks is also affected by sewage irrigation and river sediments, and industrial and household waste may also cause local accumulation of heavy metals.
|
Received: 03 February 2021
Published: 15 December 2021
|
|
Corresponding Authors:
YANG Yao-Dong
E-mail: putaodaxian@qq.com;fivess@139.com
|
|
|
|
参数 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 平均值 | 11 | 387 | 81 | 45 | 175 | 33 | 44 | 148 | 最大值 | 26 | 20664 | 287 | 688 | 2020 | 69 | 810 | 2233 | 最小值 | 5 | 61 | 42 | 14 | 12 | 18 | 15 | 47 | 背景值[4] | 11 | 123 | 79 | 28 | 23 | 34 | 24 | 82 | 变异系数 | 0.25 | 3.39 | 0.27 | 1.01 | 1.34 | 0.17 | 1.23 | 1.05 | 累积系数 | 1.01 | 3.15 | 1.02 | 1.61 | 7.66 | 0.96 | 1.85 | 1.81 |
|
Statistical parameters of heavy metals in greenbelt soil of Tianjin
|
地区 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 天津绿地 | 11 | 387 | 81 | 45 | 175 | 33 | 44 | 148 | 北京公园[5] | 12 | 490 | | 35 | 870 | 27 | 36 | 146 | 南京城区[6] | | 290 | 80 | 47 | | 35 | 46 | 134 | 重庆绿地[2] | | | 41 | 30 | 144 | | 29 | 88 | 香港公园[7] | | 2180 | | 25 | | | 93 | 168 | 都柏林城区[8] | 16 | 1770 | 44 | 51 | 339 | 41 | 123 | 248 | 雅典城区[9] | 43 | 450 | 95 | 72 | | 131 | 157 | 174 |
|
Comparison of urbansoil heavy metal content in Tianjin and other cities
|
功能区 | 样本量 | 参数 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 居住、文教区 | 102 | 平均值 | 10 | 290 | 77 | 40 | 190 | 32 | 37 | 128 | | | 最大值 | 16 | 4834 | 114 | 154 | 2020 | 44 | 113 | 458 | | | 最小值 | 6 | 74 | 42 | 16 | 12 | 18 | 20 | 56 | | | 变异系数 | 0.20 | 1.62 | 0.13 | 0.42 | 1.49 | 0.14 | 0.39 | 0.47 | | | 累积系数 | 0.98 | 2.36 | 0.98 | 1.41 | 8.34 | 0.94 | 1.52 | 1.56 | 交通绿化带 | 92 | 平均值 | 11 | 467 | 77 | 40 | 123 | 32 | 36 | 120 | | | 最大值 | 26 | 20664 | 118 | 203 | 628 | 43 | 222 | 417 | | | 最小值 | 5 | 61 | 53 | 14 | 12 | 21 | 15 | 47 | | | 变异系数 | 0.29 | 4.58 | 0.13 | 0.64 | 0.97 | 0.16 | 0.67 | 0.50 | | | 累积系数 | 0.99 | 3.79 | 0.97 | 1.42 | 5.37 | 0.93 | 1.49 | 1.46 | 工业区 | 53 | 平均值 | 11 | 402 | 91 | 65 | 217 | 34 | 74 | 241 | | | 最大值 | 20 | 2436 | 287 | 688 | 1509 | 69 | 810 | 2233 | | | 最小值 | 6 | 84 | 59 | 16 | 18 | 23 | 18 | 51 | | | 变异系数 | 0.23 | 0.90 | 0.40 | 1.40 | 1.13 | 0.23 | 1.49 | 1.30 | | | 累积系数 | 1.08 | 3.27 | 1.15 | 2.30 | 9.51 | 0.99 | 3.10 | 2.95 | 公园 | 11 | 平均值 | 11 | 265 | 78 | 44 | 181 | 34 | 38 | 120 | | | 最大值 | 17 | 395 | 93 | 87 | 795 | 44 | 60 | 167 | | | 最小值 | 8 | 179 | 70 | 27 | 47 | 27 | 27 | 85 | | | 变异系数 | 0.23 | 0.33 | 0.09 | 0.42 | 1.25 | 0.14 | 0.29 | 0.25 | | | 累积系数 | 1.06 | 2.15 | 0.98 | 1.58 | 7.91 | 1.00 | 1.57 | 1.46 | 河岸 | 9 | 平均值 | 11 | 731 | 102 | 52 | 281 | 37 | 55 | 143 | | | 最大值 | 18 | 3528 | 251 | 140 | 1224 | 49 | 166 | 358 | | | 最小值 | 8 | 125 | 69 | 22 | 32 | 30 | 21 | 74 | | | 变异系数 | 0.28 | 1.51 | 0.58 | 0.72 | 1.35 | 0.17 | 0.82 | 0.60 | | | 累积系数 | 1.05 | 5.95 | 1.29 | 1.86 | 12.31 | 1.08 | 2.28 | 1.75 |
|
Statistical parameters of heavy metals in greenbelt soil in different functional areas
|
参数 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 最大值 | 55 | 5690 | 400 | 459 | 4745 | 88 | 770 | 5677 | 最小值 | 17 | 1708 | 116 | 75 | 191 | 34 | 141 | 487 | 平均值 | 28 | 3688 | 192 | 142 | 894 | 58 | 234 | 1171 | 平均值/土壤背景值[4] | 2.80 | 22.74 | 2.42 | 4.66 | 22.46 | 1.69 | 8.94 | 13.57 |
|
Statistical parameters of heavy metal concentration in atmospheric deposit
|
[1] |
陈为峰, 孙其远, 宋希亮, 等. 不同城市功能区绿地土壤重金属分布及其生态风险评价[J]. 水土保持研究, 2019, 26(3):148-153.
|
[1] |
Chen W F, Sun Q Y, Song X L, et al. Distribution and ecological risk assessment of heavy metal elements in soils of green spaces at different urban functional areas[J]. Research of Soil and Water Conservation, 2019, 26(3):148-153.
|
[2] |
徐福银, 胡艳燕. 重庆市不同功能区城市绿地土壤重金属分布特征与评价[J]. 土壤通报, 2014, 45(1):227-231.
|
[2] |
Xu F Y, Hu Y Y, Distribution and pollution assessment on heavy metals in urban soils of different functional areas in Chongqing[J]. Chinese Journal of Soil Science, 2014, 45(1):227-231.
|
[3] |
赵靓, 梁云平, 陈倩, 等. 中国北方某市城市绿地土壤重金属空间分布特征、污染评价及来源解析[J]. 环境科学, 2020, 41(12):5552-5561.
|
[3] |
Zhao L, Liang Y P, Chen Q. Spatial distribution, contamination assessment, and sources of heavy metals in urban green space soil of a northern city in China[J]. Environmental Science, 2020, 41(12):5552-5561.
|
[4] |
曹淑萍. 天津市水土环境地球化学调查成果报告[R]. 天津市地质调查研究院, 2009.
|
[4] |
Cao S P. Report of soil and water environment geochemical survey in Tianjin[R]. Tianjin Institute of Geological Survey, 2009.
|
[5] |
刘玲玲. 北京城市公园表层土壤重金属污染评价及风险评估[D]. 合肥:安徽大学, 2020.
|
[5] |
Liu L L. Heavy metal(loid)s pollution in surface soil of Beijing urban park and their risk assessment[D]. Hefei:Anhui University, 2020.
|
[6] |
黄顺生, 吴新民, 颜朝阳, 等. 南京城市土壤重金属含量及空间分布特征[J]. 城市环境与城市生态, 2007(2):1-4.
|
[6] |
Huang S S, Wu X M, Yan C Y, et al. Heavy metal concentration and their spatial distribution in urban soils of Nanjing[J]. Urban Environment & Urban Ecology, 2007(2):1-4.
|
[7] |
Li X D, Poon C S, Liu P S. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry, 2001, 16(11):1361-1368.
|
[8] |
Glennon M M, Harris P, Ottesen R T, et al. The Dublin SURGE Project: Geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland[J]. Environmental Geochemistry and Health, 2014, 36(2):235-254.
|
[9] |
Kelepertzis E, Argyraki A. Geochemical associations for evaluating the availability of potentially harmful elements in urban soils: Lessons learnt from Athens, Greece[J]. Applied Geochemistry, 2015, 59:63-73.
|
[10] |
侯佳渝, 申燕, 曹淑萍, 等. 天津市郊区菜地土壤重金属通量的研究[J]. 安徽农业科学, 2013, 41(13):5764-5773.
|
[10] |
Hou J Y, Shen Y, Cao S P, et al. Heavy metal flux research in Tianjin suburb vegetable farmland[J]. Journal of Anhui Agricultural Sciences, 2013, 41(13):5764-5773.
|
[11] |
胡颖, 马波, 冯婷. 天津住宅小区景观用水问题探析[J]. 现代农业科技, 2009(1):72-74.
|
[11] |
Hu Y, Ma B, Fen T. Analysis of landscape water use in residential district of Tianjin[J]. Modern Agricultural Science and Technology, 2009(1):72-74.
|
[12] |
侯佳渝, 刘金成, 曹淑萍, 等. 天津市城区大气干湿沉降地球化学研究[J]. 地质调查与研究, 2013, 36(2):131-135.
|
[12] |
Hou J Y, Liu J C, Cao S P, et al. Study on the dry and wet atmospheric deposition in the urban area of Tianjin[J]. Geological Survey and Research, 2013, 36(2):131-135.
|
[13] |
王卫星, 曹淑萍, 李攻科, 等. 津北大气干湿沉降重金属元素通量与评价研究[J]. 环境科学与管理, 2017, 42(5):46-51.
|
[13] |
Wang W X, Cao S P, Li G K, et al. Sedimentation flux and its evaluation of dry and wet atmospheric deposition of heavy metal elements in North Tianjin[J]. Environmental Science and Management, 2017, 42(5):46-51.
|
[14] |
张云霞, 曹淑萍, 程绪江, 等. 中华人民共和国多目标区域地球化学图集(天津市)[M]. 北京: 地质出版社, 2016: 70.
|
[14] |
Zhang Y X, Cao S P, Chen X J, et al. Multi-purpose regional geochemical atlas(Tianjin) [M]. Beijing: Geological Publishing House, 2016: 70.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
XU Xue-Yi, XIONG Sheng-Qing, YANG Xue, GAO Wei-Hong, FAN Zheng-Guo, JIA Zhi-Ye. Aerogeophysical anomalies and prospecting direction in the Fengtai ore concentration area[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1157-1168. |
|
|
|
|