|
|
Physical simulation experiment for detecting water-filled goaf of coal mine under complex conditions bases on transient electromagnetic method |
PEI Xiao-Ming1,2( ), FENG Guo-Rui1,2( ), QI Ting-Ye1,2 |
1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2. Research Center of Green Mining Engineering Technology in Shanxi Province, Taiyuan 030024, China |
|
|
Abstract After the formation of water-filled goaf in coal mines, the distribution patterns and locations are different and unclear. Therefore, it can easily cause serious water hazards. In order to accurately locate the water-filled goaf and study its electromagnetic response characteristics, the authors chose the Datong Majiliang coal mine as the engineering background, used acrylic glass shelves as the experimental platform, and took similar simulation materials as each rock layer to design the physical experiment of transient electromagnetic detection in the water-filled goaf under different water accumulation and existence situations of collapsed rock masses. The results demonstrate that, when the goaf is filled with water, the induced electromotive force curve will be affected by the low resistance effect during the attenuation process and produce an abnormal "upward" phenomenon, and the greater the water filling, the more obvious the abnormal amplitude is. The existence of collapsed rock mass will limitedly weaken the abnormal interference of low resistance. When the goaf is not filled with water, the induced electromotive force curve decays normally, and the impact of the collapsed rock mass is negligible.
|
Received: 28 January 2021
Published: 20 August 2021
|
|
Corresponding Authors:
FENG Guo-Rui
E-mail: pxm2998944218@163.com;fguorui@163.com
|
|
|
|
地层 名称 | 平均厚度 /m | 埋深/m | 岩层 | 岩层地质特征 | 侏罗系 中、下统 延安组 (J1~2y) | 2.90 | 38.64 | 细砂岩 | 细砂岩 | | 20.28 | 41.54 | 粉砂岩 | 多为粉砂岩,极少量细砂 岩,含有植物化石碎片 | | 5.49 | 61.82 | 中粗砂岩 | 主要为中粗砂岩 | | 9.37 | 67.31 | 1号煤层 | 结构简单,全区可采, 为本区主采煤层 | | 8.09 | 75.40 | 砂质泥岩 | 灰黑色砂质泥岩,含 大量植物化石碎片 | | 4.22 | 79.62 | 泥岩 | 泥岩 | | 4.70 | 84.32 | 粉砂岩 | 主要为粉砂岩, 含有植物化石碎片 |
|
Formation distribution table of No.1 coal seam in Shendong coal mine
|
岩层 | 层序 | 铺设高度/m | 配比号 | 砂子/kg | 石灰/kg | 石膏/kg | 水/kg | 细砂岩 | 5 | 0.03 | 546 | 26.19 | 2.09 | 3.15 | 3.15 | 粉砂岩 | 4 | 0.20 | 637 | 125.50 | 6.50 | 14.50 | 14.50 | 中砂岩 | 3 | 0.05 | 537 | 47.22 | 2.82 | 6.61 | 5.69 | 煤 | 2 | 0.1 | 873 | 62.00 | 5.50 | 2.25 | 7.00 | 砂质泥岩 | 1 | 0.08 | 673 | 50.64 | 5.12 | 2.24 | 5.76 | 总量 | | 0.46 | | 311.55 | 22.03 | 28.75 | 36.10 |
|
Proportion of similar mateials in rock layers
|
|
Schematic diagram of physical simulation model
|
|
Schematic diagram of resistance test system
|
模拟岩层 | 细砂岩 | 粉砂岩 | 煤层 | 中砂岩 | 砂质泥岩 | 含水层 | 电阻率/(Ω·m) | (3.4~3.5)×103 | (7.6~7.7)×103 | (2.5~2.6)×103 | (6.8~6.9)×103 | (2.6~2.7)×102 | 1~5 |
|
Electrical characteristics of similar simulated specimens
|
|
Layout of surveying lines and points
|
|
Curves of decay electromotive force of water-filled goaf in different states
|
|
Attenuation electromotive force curves in goaf with different amounts of accumulated water(a) and the increase characteristics of induced electromotive force(b)
|
充水状态 | 采样时间/ms | 0.5645 | 0.7005 | 0.8695 | 1.0800 | 1.3405 | 1.6640 | 2.0660 | 2.5645 | 3.1840 | 全充水 | 3.6301 | 3.5741 | 3.5219 | 3.4630 | 3.3243 | 3.1076 | 2.8268 | 2.4148 | 2.0729 | 充1/2水 | 3.4773 | 3.3705 | 3.2642 | 3.0884 | 2.8599 | 2.5970 | 2.2564 | 1.9737 | 1.7080 | 未充水 | 3.2616 | 3.0930 | 2.9304 | 2.6923 | 2.5167 | 2.3015 | 2.0897 | 1.7868 | 1.6064 |
|
Response value of attenuation electromotive force in goaf with different water filling μV/A
|
|
Curves of attenuation electromotive force in the water-filled goaf with different existence status of collapsed bodies
|
充水状态 | 采样时间/ms | 0.5645 | 0.7005 | 0.8695 | 1.0800 | 1.3405 | 1.6640 | 2.0660 | 2.5645 | 3.1840 | 全充水 | 3.6301 | 3.5741 | 3.5219 | 3.4630 | 3.3243 | 3.1076 | 2.8268 | 2.4148 | 2.0729 | 全充水含垮落体 | 3.5917 | 3.5320 | 3.4377 | 3.3002 | 3.1049 | 2.9011 | 2.6377 | 2.3024 | 1.9881 | 充1/2水 | 3.4773 | 3.3705 | 3.2642 | 3.0884 | 2.8599 | 2.5970 | 2.2564 | 1.9737 | 1.7080 | 充1/2水含垮落体 | 3.4071 | 3.2613 | 3.0995 | 2.9220 | 2.7115 | 2.4262 | 2.1357 | 1.8610 | 1.6282 |
|
Response values of attenuation electromotive force of water-filled goaf in different the existence status of collapsed bodies μV/A
|
|
Amplitude reduction characteristics of attenuation electromotive force response under different water-filled conditions
|
[1] |
李琰庆, 赵华杰, 夏抗生. 废弃煤矿诱发的透水机理及防治技术[J]. 煤矿安全, 2020,51(6):87-92.
|
[1] |
Li Y Q, Zhao H J, Xia K S. Mechanism and control technology of water inrush caused by bandoned coal mines[J]. Safety in Coal Mines, 2020,51(6):87-92.
|
[2] |
李文平, 乔伟, 李小琴, 等. 深部矿井水害特征、评价方法与治水勘探方向[J]. 煤炭学报, 2019,44(8):2437-2448.
|
[2] |
Li W P, Qiao W, Li X Q, et al. Characteristics of water disaster,evaluation methods and exploration direction for controlling groundwater in deep mining[J]. Journal of China Coal Society, 2019,44(8):2437-2448.
|
[3] |
武强, 崔芳鹏, 赵苏启, 等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报, 2013,38(4):561-565.
|
[3] |
Wu Q, Cui F P, Zhao S Q, et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society, 2013,38(4):561-565.
|
[4] |
张银松, 李斌, 张家刘. 瞬变电磁法在水域地质勘察中的应用[J]. 物探与化探, 2016,40(1):160-162.
|
[4] |
Zhang Y S, Li B, Zhang J L. The application of the transient electromagnetic method to the waters geological investigation[J]. Geophysical and Geochemical Exploration, 2016,40(1):160-162.
|
[5] |
卢云飞, 薛国强, 邱卫忠, 等. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017,41(2):354-359.
|
[5] |
Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017,41(2):354-359.
|
[6] |
姜志海, 焦险峰. 矿井瞬变电磁超前探测物理实验[J]. 煤炭学报, 2011,36(11):1852-1857.
|
[6] |
Jiang Z H, Jiao X F. Physical experiment of mine transient electromagnetic advanced detection[J]. Journal of China Coal Society, 2011,36(11):1852-1857.
|
[7] |
焦险峰, 刘志新. 瞬变电磁法浅层分辨率物理模型实验研究[J]. 中国矿业大学学报, 2014,43(4):738-741.
|
[7] |
Jiao X F, Liu Z X. Physical model and experimental research on shallow resolution of transient electromagnetic method[J]. Journal of China University of Mining & Technology, 2014,43(4):738-741.
|
[8] |
许时昂, 孙松, 韩鹏飞, 等. 瞬变电磁重叠覆盖超前探水模拟测试研究[J]. 工程地球物理学报, 2014,11(1):40-43.
|
[8] |
Xu S A, Sun S, Han P F, et al. Simulation and test study of the overlapping coverage of detecting water in advance by Transient Electromagnetic Method[J]. Chinese Journal of Engineering Geophysics, 2014,11(1):40-43.
|
[9] |
张广博. 掘进工作面富水区瞬变电磁法多分量探测物理模拟及应用[D]. 徐州:中国矿业大学, 2016.
|
[9] |
Zhang G B. Physical simulation and application of multi-component Transient Electromagnetic Method in heading faces of water-rich area[D]. Xuzhou:China University of Mining & Technology, 2016.
|
[10] |
邢修举, 吴正飞, 张依瑞, 等. 三维瞬变电磁超前探测技术在隧道探水中的应用[J]. 现代隧道技术, 2020,57(1):162-167.
|
[10] |
Xing X J, Wu Z F, Zhang Y R, et al. Application of 3D transient electromagnetic advance detection technology in tunnel water exploration[J]. Modern Tunnelling Technology, 2020,57(1):162-167.
|
[11] |
王国库. 不同含水率采空区瞬变电磁响应特征研究[D]. 北京:煤炭科学研究总院, 2019.
|
[11] |
Wang G K. Study on transient electromagnetic response characteristics of goaf with different water content[J]. Beijing:China Coal Research Institute Co.,Ltd., 2019.
|
[12] |
王巍, 韩吉民, 陈剑杰, 等. 起伏地形下隐伏异常体瞬变电磁法探测的模拟实验研究[ C]// 中国地质学会工程地质专业委员会. 第八届全国工程地质大会, 2008.
|
[12] |
Wang W, Han J M, Chen J J, et al. Research on model experiment of Transient Electromagnetic Method to detect deep underground cavities in complex terrain[ C]// Geological Society of China Engineering Geology Professional Committee. Proceedings of the 8th National Engineering Geology Conference, Beijing:Editorial Department of Journal of Engineering Geology , 2008.
|
[13] |
高彬. 矿井多通道瞬变电磁响应特征研究[D]. 徐州:中国矿业大学, 2019.
|
[13] |
Gao B. Study on the characteristics of mine multi-channel transient electromagnetic response[D]. Xuzhou:China University of Mining & Technology, 2019.
|
[14] |
陈载林. 瞬变电磁法几种规则形体的物理模拟实验[J]. 物探与化探, 2013,37(6):1092-1095.
|
[14] |
Chen Z L. Physical simulation experiments on several regular shapes of Transient Electromagnetic Method[J]. Geophysical and Geochemical Exploration, 2013,37(6):1092-1095.
|
[15] |
王欣. 曙光煤矿瞬变电磁超前探测物理模拟试验研究[J]. 机械管理开发, 2018,33(7):143-144,147.
|
[15] |
Wang X. Experimental study on physical simulation of Transient Electromagnetic advanced detection in Shuguang Coal Mine[J]. Mechanical Management and Development, 2018,33(7):143-144,147.
|
[16] |
蒋邦远. 实用近区磁源瞬变电磁法勘探[M]. 北京: 地质出版社, 1998.
|
[16] |
Jiang B Y. Applied near zone magnetic source transient electro-magnetic exploration[M]. Beijing: Geological Publishing House, 1998.
|
[17] |
刘志新, 刘树才, 刘仰光. 矿井富水体的瞬变电磁场物理模型实验研究[J]. 岩石力学与工程学报, 2009,28(2):259-266.
|
[17] |
Liu Z X, Liu S C, Liu Y G. Research on transient electromagnetic field of mine water-bearing structure by physical model experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(2):259-266.
|
[18] |
姚琦, 冯涛, 王卫军, 等. 矿山开采相似材料配比及力学试验研究[J]. 安全与环境学报, 2017,17(6):2129-2134.
|
[18] |
Yao Q, Feng T, Wang W J, et al. On preparing the materials as close as possible in the experimental ratio and mechanical properties with those gained from mining[J]. Journal of Safety and Environment, 2017,17(6):2129-2134.
|
[19] |
黄庆享, 胡火明. 黏土隔水层的应力应变全程相似模拟材料和配比实验研究[J]. 采矿与安全工程学报, 2017,34(6):1174-1178.
|
[19] |
Huang Q X, Hu H M. Experimental study of simulation material and matching for whole stress and strain process of clay aquiclude[J]. Journal of Mining & Safety Engineering, 2017,34(6):1174-1178.
|
[1] |
ZHANG Fan, FENG Guo-Rui, QI Ting-Ye, YU Chuan-Tao, ZHANG Xin-Jun, WANG Chao-Yu, DU Sun-Wen, ZHAO De-Kang. Feasibility of the transient electromagnetic method in the exploration of double-layer waterlogged goafs with different layer spacings in coal mines[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1215-1225. |
[2] |
ZHOU Zhong-Hang, ZHANG Ying-Ying. Correction of the influence of mountains on grounded-source transient electromagnetic responses[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1236-1249. |
|
|
|
|