|
|
The application of fretting exploration technology in the exploration of middle and deep clean energy |
DONG Yao1(), LI Guang-Hui1, GAO Peng-Ju2, REN Jing1, XIAO Juan1 |
1. Henan Aero Geophysical Survey and Remote Sensing Center, Zhengzhou 450053,China 2. The Institude of Exploration Techniques,CAGS,Langfang 065000,China |
|
|
Abstract With the further advancement of the energy reform,the exploration,development and utilization of geothermal energy in the middle and deep clean energy are imminent.At present,the exploration,development and utilization focus on the middle and deep level, mainly in urban areas,which limits the use of conventional seismic,magnetotelluric and other geophysical prospecting methods, and new methods need to be introduced. In this article,through micro exploration technology in some urban areas to carry out the relevant experiments, comparison of previous high precision gravity,magnetotelluric sounding,geothermal hole data,verified the micro test result,interpretation of stratigraphic classification and tectonic position was consistent with known data,deserves further research and promotion,to realize micro exploration technology in deep geothermal energy in the fast exploration and development is of great significance.
|
Received: 11 November 2019
Published: 29 December 2020
|
|
|
|
|
|
Regional geological map
|
|
Regional bouguer gravity anomaly map
|
|
Regional magnetic field characteristics
|
地层单位 | 主 要 岩 性 | 电阻率/(Ω·m) | 界 | 群(系) | 代号 | 新生界 | 第四系 | Q | 黄土 | 10~200 | 新近系- 古近系 | E-N | 粘土岩、砂岩 | 3~200 | 中生界 | 白垩系 | K | 泥岩、粉砂质泥岩、泥灰岩、砾岩 | 100~200 | 侏罗系 | J | 石英砂岩、泥岩、煤层、砾岩 | 100~200 | 三叠系 | T | 砂岩、粉砂岩、泥岩互层 | 80~200 | 古生界 | 二叠系 | P | 砂岩、页岩、粘土岩 | 20~400 | 石炭系 | C2 | 粘土岩、炭质页岩、灰岩 | 60~200 | 奥陶系 | O | 灰岩 | 60~1500 | 寒武系 | ∈ | 白云岩、灰岩、页岩 | | 古元古界 | 震旦系 | Z | 石英岩、白云大理岩、绢云石英片岩 | 100~350 | 太古宇 | | Ar | 黑云斜长片麻岩、斜长角闪片岩、黑云变粒岩、 二云石英片岩 | 100~2000 |
|
Statistics of strata and rock mineralogy in Henan Province
|
|
Observation system of fretting surface wave
|
|
Maximum radius effective sounding depth test of test site
|
|
Test point station effective detection test
|
|
Test point 600 m maximum array radius finite time test
|
|
Inversed S-wave-like velocity profile
|
|
Magnetotelluric profile
|
[1] |
曾昭发, 陈雄, 李静, 等. 地热地球物理勘探新进展[J]. 地球物理学进展, 2012,27(1):168-178.
|
[1] |
Zeng Z F, Chen X, Li J, et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics, 2012,27(1):168-178.
|
[2] |
唐建伟, 丁建荣, 郝天珧. 徐闻地区综合地球物理勘探方法应用研究[J]. 地球物理学进展, 2008,23(3):800-807.
|
[2] |
Tang J W, Ding J R, Hao T Y. Application study of comprehensive geophysical methods in the Xuwen area[J]. Progress in Geophysics, 2018,23(3):800-807.
|
[3] |
何继善, 柳建新. 隧道超前探测方法技术与应用研究[J]. 工程地球物理学报, 2004,1(4):293-298.
|
[3] |
He J S, Liu J X. A study of teh tunnel advanced detection thchnology and its application[J]. Chinese Journal of Engineering Geophysics, 2004,1(4):293-298.
|
[4] |
邓起东, 徐锡伟, 张先康, 等. 城市活动断裂探测的方法和技术[J]. 地学前缘, 2003,10(1):93-104.
|
[4] |
Deng Q D, Xu X W, Zhang X K, et al. Methods and techniques for surveying and prospecting active faults in urban areas[J]. Earth Science Frontiers, 2003,10(1):93-104.
|
[5] |
于淼, 林君. 天然源面波在采空区探测中的应用[J]. 煤炭技术, 2013,32(12):85-87.
|
[5] |
Yu M, Lin J. Application of natural source surface waves in goaf survey[J]. Coal Technology, 2013,32(12):85-87.
|
[6] |
Okada H. Theory of efficient array observations of microtremors withspecial reference to the SPAC metho[J]. Exploration Geophysics, 2006,37(1):73-85.
|
[7] |
高艳华, 黄溯航, 刘丹, 等. 微动探测技术及其工程应用进展[J]. 科学技术与工程, 2018,18(23):146-155.
|
[7] |
Gao Y H, Huang S H, Liu D, et al. Microtremor detection technology and its new progress in engineering application[J]. Science Technology and Engineering, 2018,18(23):146-155.
|
[8] |
吕新爱, 闫晓珂, 邹雨霖, 等. 偃龙煤田府店勘查区煤质特征分析与评价[J]. 内蒙古煤炭经济, 2018(15):45-46.
|
[8] |
Lyu X A, Yan X K, Zou Y L, et al. Analysis and evaluation of coal quality in yanlong coalfield[J]. Coal Economy of Inner Mongolia, 2018(15):45-46.
|
[9] |
张古彬, 王现国, 罗新杰. 三门峡盆地地下热水形成条件分析及保护研究[J]. 人民黄河, 2011,33(7):81-82.
|
[9] |
Zhang G B, Wang X G, Luo X J. Analysis and protection research on formation conditions of geothermal water in sanmenxia basin[J]. Yellow River, 2011,33(7):81-82.
|
[10] |
张天增, 吕志涛, 王伟峰. 河南省开封市汴西新区地热资源特征分析[J]. 资源导刊:地球科技版, 2013(11):65-68,71.
|
[10] |
Zhang T Z, Lyu Z T, Wang W F. Analysis on characteristics of geothermal resources in bianxi new area, kaifeng city,henan Province[J]. Resources Guide:Earth Science and Technology Edition, 2013(11):65-68,71.
|
[11] |
苏媛媛. 豫东下古生界地热资源潜力评价[J]. 山东煤炭科技, 2017(6):185-187.
|
[11] |
Su Y Y. Potential evaluation of lower Paleozoic geothermal resources in eastern henan[J]. Shandong Coal Science and Technology, 2017(6):185-187.
|
[12] |
程远, 秦曦, 赵晓晓, 等. 东秦岭钼铅锌银多金属矿集区地球物理场特征及综合信息找矿模型[J]. 地质与勘探, 2018,54(4):747-761.
|
[12] |
Cheng Y, Qin X, Zhao X X, et al. Geophysical characteristics and prospecting model based on comprehensive informationin the molybdenum,lead,zinc and silver polymetallic ore concentration area of the East QinlingMountains[J]. Geology and Exploration, 2018,54(4):747-761.
|
[13] |
孙勇军, 徐佩芬, 凌甦群, 等. 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009,24(1):326-334.
|
[13] |
Sun Y J, Xu P F, Lin T Q, et al. Microtremor survey method and its progress[J]. Progress in Geophysics, 2009,24(1):326-334.
|
[14] |
刘宏岳, 黄佳坤, 孙智勇, 等. 微动探测方法在城市地铁盾构施工“孤石”探测中的应用——以福州地铁1号线为例[J]. 隧道建设, 2016,36(12):1500-1506.
|
[14] |
Liu H Y, Huang J K, Sun Z Y, et al. Application of microtremor method to boulders detection in urban metro shield construction:case study of Fuzhou metro line No. 1[J]. Tunnel Construction, 2016,36(12):1500-1506.
|
[15] |
王未来, 吴建平, 房立华. 利用地脉动信息约束沉积层区域台站下方速度结构反演[J]. 地震学报, 2011,33(1):28-38.
|
[15] |
Wang W L, Wu J P, Fang L H. Application of microseismic data to constraining inversion for velocity structure beneath stations in sedimentary area[J]. Acta Seismologica Sinica, 2011,33(1):28-38.
|
[16] |
冈田广, 凌甦群. 微动利用の 地下构造探查に 关す る 最近の研究につぃ て[R]. 北海道大学大学院研究报告, 1994.
|
[16] |
Okada H, Ling S Q. About a recent study on the surveying geologic structures by using the Microtremor Survey Method[R]. Report of Hokkaido University(in Japanese), 1994.
|
[17] |
何正勤, 丁志峰, 贾辉, 等. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 2007,50(2):492-498.
|
[17] |
He Z Q, Ding Z F, Jia H, et al. To determine the veloeity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 2007,50(2):492-498.
|
[1] |
CHEN Bo, ZHU Guo-Wei, WU Yan-Hui, YANG Zhen-Qiang, ZHOU Jun-Jie. Research on identifying the airy phase of transmitted channel waves based on generalized S-transform[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1303-1310. |
[2] |
LIU Hui, LI Jing, ZENG Zhao-Fa, WANG Tian-Qi. Stochastic inversion of surface wave dispersion curves based on Bayesian theory[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 951-960. |
|
|
|
|