|
|
A study of geoelectrochemistry in search for concealed copper-nickel deposits in Hejiaya area, Lueyang County, Shaanxi Province |
Wang HE1, Xian-Rong LUO1( ), Fei OUYANG1, Pan-Feng LIU1, Yi-Huai SU1, Wen-Bin HUANG1, Dong WANG1, Jun YOU2, Xiao-Ming ZHANG2 |
1. Institute of Concealed Mine Prospecting, College of Earth Science,Guilin University of Technology, Guilin 541004, China 2. Shaanxi Institute of Geological Survey,Xi'an 710068, China |
|
|
Abstract In this paper, geoelectrochemistry was used to carry out feasibility study above nickel deposits in Hejiaya area, Lueyang, Shaanxi Province. The results were compared with results obtained by traditional soil geochemical measurement methods. The results show that geoelectrochemistry and soil geochemical measurements above nickel deposit profiles show anomalies, but the soil geochemical anomalies are not good in content and morphology. It is inferred that the topography and epigenesis may influence the distribution of anomalies, which makes the distribution of anomalies slightly disordered and the clarity of anomalies reduced. Compared with soil geochemical anomalies, geoelectrochemical anomalies show a good correspondence above the ore site, and the anomalies show a steep double-peak or three-peak pattern. In order to further study the distribution characteristics of anomalies on the plane, the authors analyzed the element content of the two methods. It is found that geoelectrochemical method can strengthen anomalies to a certain extent, magnify the anomaly effect and easily summarize the law of element dispersion and enrichment. On such a basis and in combination with the results of geological and geophysical exploration, two favorable prospecting targets were delineated by geoelectrochemistry in the study area, which indicate the existence of concealed orebodies in its deep part, but this conclusion needs to be verified by engineering.
|
Received: 07 September 2019
Published: 24 June 2020
|
|
Corresponding Authors:
Xian-Rong LUO
E-mail: lxr811@glut.edu.cn
|
|
|
|
|
Regional geotectonic sketch map (a) and geological map of the study area (b)
|
元素 | 检出限/10-6 | 元素 | 检出限/10-6 | V | 0.5 | Nb | 0.03 | Cr | 0.92 | Mo | 0.05 | Mn | 0.3 | Ag | 0.01 | Co | 0.11 | Cd | 0.03 | Ni | 0.36 | Au | 0.001 | Cu | 0.85 | Tl | 0.01 | Zn | 2.2 | Pb | 0.98 | Ga | 0.02 | Bi | 0.009 |
|
Detection limits of the method
|
点号 | 地电化学 | 土壤地球化学 | Cr | Mn | Cu | As | Co | Ni | Cr | Mn | Cu | As | Co | Ni | 2-10 | 0.92 | 5.10 | 0.97 | 0.15 | 0.19 | 0.41 | 119.3 | 897.5 | 33.6 | 9.4 | 28.6 | 33.6 | 2-12 | 1.13 | 35.06 | 3.80 | 0.27 | 0.77 | 1.70 | 69.4 | 1354.7 | 59.8 | 9.7 | 36.9 | 30.0 | 2-14 | 0.96 | 16.67 | 1.51 | 0.22 | 0.48 | 1.45 | 86.3 | 1265.7 | 61.7 | 20.9 | 25.4 | 46.1 | 2-16 | 0.62 | 8.23 | 1.24 | 0.11 | 0.25 | 0.70 | 80.3 | 1281.7 | 45.3 | 19.7 | 22.7 | 39.1 | 2-18 | 1.10 | 8.27 | 1.11 | 0.17 | 0.56 | 0.76 | 80.4 | 1028.4 | 59.7 | 23.2 | 26.3 | 44.7 | 2-20 | 0.59 | 7.59 | 2.62 | 0.11 | 0.32 | 1.00 | 114.0 | 1485.2 | 71.5 | 48.8 | 52.0 | 55.8 | 2-21 | 0.34 | 6.86 | 1.30 | 0.19 | 0.39 | 0.59 | 104.3 | 1404.7 | 75.9 | 55.2 | 53.0 | 45.8 | 2-22 | 0.62 | 6.19 | 1.78 | 0.18 | 0.59 | 1.10 | 109.4 | 1351.1 | 197.4 | 46.1 | 45.5 | 110.0 | 2-23 | 5.84 | 380.12 | 72.16 | 0.61 | 15.59 | 48.26 | 107.7 | 1176.2 | 155.3 | 23.8 | 41.3 | 117.0 | 2-24 | 1.69 | 53.51 | 2.71 | 0.20 | 2.40 | 3.79 | 122.6 | 1138.0 | 86.1 | 10.7 | 40.9 | 77.0 | 2-25 | 2.15 | 107.56 | 2.50 | 0.22 | 2.28 | 2.44 | 76.6 | 956.8 | 35.6 | 8.7 | 20.1 | 31.7 | 2-26 | 1.66 | 45.12 | 1.79 | 0.24 | 1.12 | 1.23 | 84.2 | 870.9 | 44.0 | 8.8 | 21.5 | 30.7 | 2-27 | 2.96 | 84.89 | 4.75 | 0.26 | 4.75 | 3.93 | 106.3 | 665.2 | 25.1 | 10.3 | 29.1 | 36.0 | 2-28 | 4.64 | 171.34 | 4.37 | 0.29 | 10.34 | 7.26 | 171.8 | 1018.5 | 64.1 | 9.6 | 48.4 | 49.2 | 2-29 | 1.47 | 121.30 | 5.59 | 0.08 | 4.72 | 2.97 | 102.8 | 780.9 | 32.6 | 9.6 | 25.9 | 36.1 | 2-30 | 1.32 | 26.63 | 1.17 | 0.13 | 1.10 | 1.45 | 152.9 | 857.1 | 29.5 | 7.5 | 33.4 | 47.1 | 2-31 | 2.74 | 85.17 | 45.53 | 0.18 | 3.69 | 3.39 | 176.5 | 1047.1 | 36.0 | 10.2 | 40.8 | 45.4 | 2-32 | 0.40 | 6.01 | 6.32 | 0.07 | 0.31 | 0.89 | 59.1 | 609.7 | 22.8 | 4.2 | 24.9 | 23.9 | 2-33 | 9.02 | 321.06 | 6.55 | 0.19 | 13.47 | 8.29 | 219.4 | 681.8 | 23.4 | 2.8 | 28.0 | 54.2 | 2-34 | 0.83 | 24.57 | 1.97 | 0.09 | 1.16 | 2.00 | 94.8 | 921.2 | 28.2 | 2.6 | 32.2 | 29.5 | 2-35 | 0.38 | 5.96 | 0.65 | 0.04 | 0.31 | 0.41 | 73.7 | 846.5 | 28.8 | 5.1 | 29.6 | 29.9 | 2-38 | 0.94 | 4.86 | 0.83 | 0.11 | 0.44 | 0.73 | 16.3 | 304.6 | 10.5 | 0.8 | 8.2 | 10.3 | 2-40 | 0.65 | 5.38 | 0.63 | 0.06 | 0.27 | 0.51 | 121.5 | 979.9 | 35.4 | 5.4 | 39.6 | 37.0 |
|
Comparison of original data of line 2 section
|
|
Geochemical test profile of line 2 in Hejiaya area
|
|
Box diagram intention
|
|
Contrastive characteristics of box diagrams of elements in different methods
|
元素 | Me | Q1 | Q3 | IQR | Fu | Fl | Ni | 1.04 | 0.58 | 1.60 | 1.02 | 3.13 | 4.66 | Co | 1.02 | 0.76 | 1.67 | 0.92 | 3.05 | 4.42 | Cu | 1.02 | 0.70 | 1.72 | 1.02 | 3.26 | 4.79 | Cr-Mn-Cu-Co-Ni | 5.55 | 4.00 | 8.77 | 4.78 | 15.94 | 23.11 |
|
Statistical parameters of box diagram
|
|
Plane distribution map of element Ni(a) and Co(b) anomalies
|
|
Plane distribution map of element Cu(a) and Cr-Mn-Cu-Co-Ni(b) anomalies
|
|
Prospecting target map
|
[1] |
王学求. 勘查地球化学近十年进展[J]. 矿物岩石地球化学通报, 2013,32(2):190-197.
|
[1] |
Wang X Q. Progress in exploration geochemistry in the past decade[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013,32(2):190-197.
|
[2] |
孙剑, 陈岳龙, 李大鹏. 隐伏矿床勘查地球化学新进展[J]. 地球科学进展, 2011,26(8):822-836.
|
[2] |
Sun J, Chen Y L, Li D P. New progress in exploration and geochemistry of concealed deposits[J]. Advances in Earth Science, 2011,26(8):822-836.
|
[3] |
杨笑笑, 罗先熔, 文美兰, 等. 地电化学法在豫西崤山黄土覆盖区找矿中的应用——以洛宁县石龙山预查区为例[J]. 物探与化探, 2019,43(2):244-256.
|
[3] |
Yang X X, Luo X R, Wen M L, et al. The application of geo-electrochemical methods to prospecting in the loess-covered Xiaoshan Mountain, western Henan Province: A case study of the Shilongshan gold polymetallic ore prospecting area in Luoning County[J]. Geophysical and Geochemical Exploration, 2019,43(2):244-256.
|
[4] |
孙彬彬. 地电化学异常形成机理及找矿技术规范化研究[D]. 北京:中国地质大学 (北京), 2017.
|
[4] |
Sun B B. Study on the formation mechanism of geoelectrochemistry anomaly and the standardization of prospecting technology[D]. Beijing:China University of Geosciences (Beijing), 2017.
|
[5] |
刘攀峰, 罗先熔, 文美兰, 等. 近三十年来我国地电化学技术研究回顾与展望[J]. 桂林理工大学学报, 2018,38(1):47-55.
|
[5] |
Liu P F, Luo X R, Wen M L, et al. Review and prospect of geoelectrochemistry in China in the past 30 years[J]. Journal of Guilin University of Technology, 2018,38(1):47-55.
|
[6] |
游军, 唐永忠, 罗婷, 等. 陕西勉略宁地区赵家坪—苍社一带碳酸岩地质地球化学特征与成因探讨[J]. 科学技术与工程, 2018,18(6):57-64.
|
[6] |
You J, Tang Y Z, Luo M, et al. Geological and geochemical characteristics and genesis of carbonatite in zhaojiaping cangshe area, mianluening area, Shaanxi Province[J]. Science Technology and Engineering, 2018,18(6):57-64.
|
[7] |
杨运军, 杜少喜, 张小明, 等. 陕西勉略宁三角区碧口群火山岩系特征及其地质填图方法探讨[J]. 西北地质, 2017,50(3):105-112.
|
[7] |
Yang Y J, Du S X, Zhang X M, et al. The characteristics of Bikou Group volcanic rock series and its geological mapping method in mianluening triangle area, Shaanxi Province[J]. Northwestern Geology, 2017,50(3):105-112.
|
[8] |
戢兴忠. 碧口地体区域成矿系统[D]. 北京:中国地质大学 (北京), 2016.
|
[8] |
Ji X Z. Regional metallogenic system of Bikou terrane[D]. Beijing:China University of Geosciences (Beijing), 2016.
|
[9] |
张小明, 游军, 杨运军. 陕南略阳县白雀寺基性杂岩铁—镍成矿条件分析[J]. 矿产勘查, 2018,9(9):1643-1653.
|
[9] |
Zhang X M, You J, Yang Y J. Iron nickel metallogenic conditions of Baiquesi basic complex, Lueyang County, South Shaanxi Province[J]. Mineral Exploration, 2018,9(9):1643-1653.
|
[10] |
施意华, 杨仲平, 黄俭惠, 等. ICP-MS测定电吸附找矿泡塑样品中微量元素[J]. 光谱学与光谱分析, 2009,29(6):1687-1690.
|
[10] |
Shi Y H, Yang Z P, Huang J H, et al. ICP-MS determination of trace elements in ore bubble plastic samples by electro adsorption[J]. Spectroscopy and Spectral Analysis, 2009,29(6):1687-1690.
|
[11] |
刘映东, 张必敏, 罗先熔. 地电化学在隐伏铜镍矿勘查中的应用及异常形成机理探讨[J]. 地质与勘探, 2017,53(4):694-703.
|
[11] |
Liu Y D, Zhang B M, Luo X R. The application of geoelectrochemistry in the exploration of concealed copper nickel deposits and Discussion on the mechanism of the formation of anomalies[J]. Geology and Exploration, 2017,53(4):694-703.
|
[12] |
史长义. 勘查数据分析(EDA)技术的应用[J]. 地质与勘探, 1993,(11):52-58.
|
[12] |
Shi C J. Application of exploration data analysis (EDA) technology[J]. Geology and Exploration, 1993, (11):52-58.
|
[13] |
吴希, 潘淑霞. 统计质量控制及其应用[M]. 北京: 化学工业出版社, 2016.
|
[13] |
Wu X, Pan S X. Statistical quality control and its application[M]. BeiJing: Chemical Industry Press, 2016.
|
[14] |
陈剑祥, 吴新斌, 张海峰, 等. 陕西略阳中坝子钛磁铁矿床地质特征及找矿方向研究[J]. 西北地质, 2013,46(2):111-118.
|
[14] |
Chen J X, Wu X B, Zhang H B, et al. Geological characteristics and prospecting direction of zhongbazi titanomagnetite deposit, Lueyang, Shaanxi Province[J]. Northwestern Geology, 2013,46(2):111-118.
|
[15] |
徐学义, 夏祖春, 夏林圻. 碧口群火山旋回及其地质构造意义[J]. 地质通报, 2002,21(8-9):478-485.
|
[15] |
Xu X Y, Xia Z C, Xia L Q. Volcanic cycle of Bikou Group and its tectonic significance[J]. Geological Bulletin of China, 2002,21(8-9):478-485.
|
[16] |
夏林圻, 夏祖春, 徐学义, 等. 碧口群火山岩岩石成因研究[J]. 地学前缘, 2007,14(3):84-101.
|
[16] |
Xia L Q, Xia Z C, Xu X Y, et al. Petrogenesis of Bikou Group volcanic rocks[J]. Earth Science Frontiers, 2007,14(3):84-101.
|
[17] |
姜修道, 魏钢锋, 聂江涛. 煎茶岭镍矿——是岩浆还是热液成因[J]. 矿床地质, 2010,29(6):1112-1124.
|
[17] |
Jiang X D, Wei G F, Lie J T. Jianchaling nickel deposit: magma or hydrothermal origin[J]. Mineral Deposits, 2010,29(6):1112-1124.
|
[18] |
代军治, 陈荔湘, 石小峰, 等. 陕西略阳煎茶岭镍矿床酸性侵入岩形成时代及成矿意义[J]. 地质学报, 2014,88(10):1861-1873.
|
[18] |
Dai J Z, Chen L X, Shi X F, et al. Age and Metallogenic Significance of acid intrusive rocks in Jianchaling nickel deposit, Lueyang, Shaanxi Province[J]. Acta Geologica Sinica, 2014,88(10):1861-1873.
|
[1] |
ZHAO Xiao-Yuan, YANG Zhong-Fang, CHENG Hui-Yi, MA Xu-Dong, WANG Jue, LI Zhi-Kun, WANG Chen, LI Ming-Hui, LEI Feng-Hua. Geochemical characteristics and ecological health-related ranges of Copper in soil in Huaying Mountain-Xicao in Linshui County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 238-249. |
[2] |
Wei-Xing WANG, Shu-Ping CAO, Gong-Ke LI. Chemical composition analysis and soil geochemical characteristics of Mopan persimmon in Panshan, Tianjin[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1131-1137. |
|
|
|
|